Magnetic Steering of Superparamagnetic Nanoparticles in Duct Flow for Molecular Communication: A Feasibility Study

  • Niklas Schlechtweg
  • Sebastian Meyer
  • Harald Unterweger
  • Max Bartunik
  • Doaa Ahmed
  • Wayan Wicke
  • Vahid Jamali
  • Christoph Alexiou
  • Georg Fischer
  • Robert Weigel
  • Robert Schober
  • Jens KirchnerEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 297)


Molecular communication (MC) denotes information transmission by use of molecules and nanosized particles. For the realization of testbeds, superparamagnetic iron oxide nanoparticles (SPIONs) in duct flow have recently been proposed. Here, an experimental setup is provided to direct these particles at a branching of a tube into a specific direction by use of magnetic fields.

For that purpose, gold-coated SPIONs suspended in water at constant flow rate are considered at a Y-shaped connector of tubes. The particles are attracted by use of a custom-made electromagnet, while change of particle concentration in either of the branches is measured by a commercial susceptometer. The approach is evaluated for different flow rates and with the electromagnet both at a fixed position and moving along the tube. Exemplary measurements show that an information transmission is feasible in both approaches and with all tested flow rates.

The feasibility study hence shows that particle steering by use of magnetic fields is a viable approach, which is even robust against flow rate variations. It can thus be used in MC to address different transmission channels as well as to realize differential signal transmission. Furthermore, it might help to improve magnetic drug targeting in future applications.


Superparamagnetic nanoparticles Particle steering Magnetic field Duct flow Molecular communication 


  1. 1.
    Andrews, S.S.: Accurate particle-based simulation of adsorption, desorption and partial transmission. Phys. Biol. 6(4), 046015 (2009). Scholar
  2. 2.
    Bicen, A.O., Akyildiz, I.F.: Molecular transport in microfluidic channels for flow-induced molecular communication. In: 2013 IEEE International Conference on Communications Workshops (ICC), pp. 766–770, June 2013.
  3. 3.
    Dasgupta, B.B.: Magnetic field due to a solenoid. Am. J. Phys. 52, 258 (1984)CrossRefGoogle Scholar
  4. 4.
    Derby, N., Olbert, S.: Cylindrical magnets and ideal solenoids. Am. J. Phys. 78, 228–235 (2010)CrossRefGoogle Scholar
  5. 5.
    Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K., Karewicz, A.: Superparamagnetic iron oxide nanoparticles–current and prospective medical applications. Materials 12(4) (2019). Scholar
  6. 6.
    Eremenko, Z.E., Kuznetsova, E.S., Shubnyi, A.I., Martunov, A.V.: High loss liquid in layered waveguide at microwaves and applications. In: 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), pp. 246–249, July 2018.
  7. 7.
    Farsad, N., Pan, D., Goldsmith, A.: A novel experimental platform for in-vessel multi-chemical molecular communications. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, pp. 1–6, December 2017.
  8. 8.
    Farsad, N., Guo, W., Eckford, A.: Tabletop molecular communication: text messages through chemical signals. Public Libr. Sci. ONE 8, e82935 (2013)Google Scholar
  9. 9.
    Farsad, N., Yilmaz, B., Eckford, A., Chae, C.B., Guo, W.: A comprehensive survey of recent advancements in molecular communications. IEEE Commun. Surv. Tutor. 18, 1887–1919 (2016)CrossRefGoogle Scholar
  10. 10.
    Giannoukos, S., Marshall, A., Taylor, S., Smith, J.: Molecular communication over gas stream channels using portable mass spectrometry. J. Am. Soc. Mass Spectrom. 28(11), 2371–2383 (2017). Scholar
  11. 11.
    Grebenstein, L., et al.: Biological optical-to-chemical signal conversion interface: a small-scale modulator for molecular communications. IEEE Trans. Nanobiosci. 18(1), 31–42 (2019). Scholar
  12. 12.
    Griffiths, D.J.: Introduction to Electrodynamics. Always Learning, 4th edn. Pearson, Boston (2013). International EditionGoogle Scholar
  13. 13.
    Gul, E., Atakan, B., Akan, O.B.: NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun. Netw. 1(2), 138–156 (2010). Scholar
  14. 14.
    Iwasaki, S., Yang, J., Nakano, T.: A mathematical model of non-diffusion-based mobile molecular communication networks. IEEE Commun. Lett. 21(9), 1969–1972 (2017). Scholar
  15. 15.
    Jamali, V., Ahmadzadeh, A., Wicke, W., Noel, A., Schober, R.: Channel modeling for diffusive molecular communication - a tutorial review. CoRR abs/1812.05492 (2018).
  16. 16.
    Kennedy, E., Shakya, P., Ozmen, M., Rose, C., Rosenstein, J.K.: Spatiotemporal information preservation in turbulent vapor plumes. Appl. Phys. Lett. 112(26), 264103 (2018). Scholar
  17. 17.
    Koo, B., Lee, C., Yilmaz, H.B., Farsad, N., Eckford, A., Chae, C.: Molecular MIMO: from theory to prototype. IEEE J. Sel. Areas Commun. 34(3), 600–614 (2016)CrossRefGoogle Scholar
  18. 18.
    Krishnaswamy, B., et al.: Time-elapse communication: bacterial communication on a microfluidic chip. IEEE Trans. Commun. 61(12), 5139–5151 (2013). Scholar
  19. 19.
    Labinac, V., Erceg, N., Kotnik-Karuza, D.: Magnetic field of a cylindrical coil. Am. J. Phys. 74, 621–627 (2006)CrossRefGoogle Scholar
  20. 20.
    Nakano, T., Eckford, A., Haraguchi, T.: Molecular Communication. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  21. 21.
    Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10, 1295–1308 (2014)CrossRefGoogle Scholar
  22. 22.
    Shakya, P., Kennedy, E., Rose, C., Rosenstein, J.K.: Correlated transmission and detection of concentration-modulated chemical vapor plumes. IEEE Sens. J. 18(16), 6504–6509 (2018). Scholar
  23. 23.
    Unterweger, H., et al.: Experimental molecular communication testbed based on magnetic nanoparticles in duct flow. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, June 2018.
  24. 24.
    Urbach, A.R., Love, J.C., Prentiss, M.G., Whitesides, G.M.: Sub-100 nm confinement of magnetic nanoparticles using localized magnetic field gradients. J. Am. Chem. Soc. 125(42), 12704–12705 (2003). Scholar
  25. 25.
    Wahajuddin, S.A.: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7, 3445–3471 (2012). Scholar
  26. 26.
    White, F.: Fluid Mechanics, 7th edn. McGraw-Hill, New York (2011)Google Scholar
  27. 27.
    Yilmaz, H.B., Suk, G., Chae, C.: Chemical propagation pattern for molecular communications. IEEE Wirel. Commun. Lett. 6(2), 226–229 (2017). Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Institute for Electronics EngineeringFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  2. 2.Section for Experimental Oncology and NanomedicineUniversity Hospital ErlangenErlangenGermany
  3. 3.Institute for Digital CommunicationsFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations