Advertisement

Sensitivity of Galvanic Intra-Body Communication Channel to System Parameters

  • Ahmed E. KhorshidEmail author
  • Ibrahim N. Alquaydheb
  • Ahmed M. Eltawil
  • Fadi Kurdahi
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 297)

Abstract

In this paper, we investigate the sensitivity of the galvanic coupling Intra-Body Communication (IBC) channel to the variation of the basic parameters - being them electrical, geometrical or biological - of the main blocks of the IBC system; the transmitter and receiver nodes, the electrodes used, and the communication channel itself being the human body in this case. The study is performed over the frequency range 100 kHz–100 MHz, providing the system designer with a unique guide for the relationship between the system parameters, thus facilitating the design of an efficient and better matched system components.

Keywords

Body Area Networks Intra-Body Communication Galvanic coupling Channel modeling Circuit model 

Notes

Acknowledgments

The authors gratefully acknowledge that this work was supported in part by the National Institute of Justice (NIJ) grant number 2016-R2-CX-0014.

References

  1. 1.
    Zimmerman, T.G.: Personal area networks: near-field intrabody communication. IBM Syst. J. 35(3.4), 609–617 (1996)CrossRefGoogle Scholar
  2. 2.
    Handa, T., Shoji, S., Ike, S., Takeda, S., Sekiguchi, T.: A very low-power consumption wireless ECG monitoring system using body as a signal transmission medium. In: Proceedings of International Solid State Sensors and Actuators Conference (Transducers’ 97), vol. 2, pp. 1003–1006. IEEE, June 1997Google Scholar
  3. 3.
    Ruiz, J.A., Xu, J., Shimamoto, S.: Propagation characteristics of intra-body communications for body area networks. In: 2006 3rd IEEE Consumer Communications and Networking Conference 2006, CCNC 2006, vol. 1, pp. 509–513. IEEE, January 2006Google Scholar
  4. 4.
    Khorshid, A.E., Eltawil, A.M., Kurdahi, F.: Intra-body communication model based on variable biological parameters. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 948–951. IEEE, November 2015Google Scholar
  5. 5.
    Alquaydheb, I.N., Khorshid, A.E., Eltawil, A.M.: Analysis and estimation of intra-body communications path loss for galvanic coupling. In: Fortino, G., Wang, Z. (eds.) Advances in Body Area Networks I. IT, pp. 267–277. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-02819-0_20CrossRefGoogle Scholar
  6. 6.
    Song, Y., Hao, Q., Zhang, K., Wang, M., Chu, Y., Kang, B.: The simulation method of the galvanic coupling intrabody communication with different signal transmission paths. IEEE Trans. Instrum. Meas. 60(4), 1257–1266 (2011)CrossRefGoogle Scholar
  7. 7.
    Khorshid, A.E., Eltawil, A.M., Kurdahi, F.: On the optimum data carrier for intra-body communication applications. In: Proceedings of the 11th EAI International Conference on Body Area Networks, pp. 137–140. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), December 2016Google Scholar
  8. 8.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 2251 (1996)CrossRefGoogle Scholar
  9. 9.
    Khorshid, A.E., Alquaydheb, I.N., Eltawil, A.M., Kurdahi, F.J.: Physical multi-layer phantoms for intra-body communications. IEEE Access 6, 42812–42821 (2018)CrossRefGoogle Scholar
  10. 10.
    Mao, J., Yang, H., Lian, Y., Zhao, B.: A five-tissue-layer human body communication circuit model tunable to individual characteristics. IEEE Trans. Biomed. Circ. Syst. 12(2), 303–312 (2018)CrossRefGoogle Scholar
  11. 11.
    Khorshid, A.E., Alquaydheb, I.N., Eltawil, A.M.: Electrode impedance modeling for channel characterization for intra-body communication. In: Fortino, G., Wang, Z. (eds.) Advances in Body Area Networks I. IT, pp. 253–266. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-02819-0_19CrossRefGoogle Scholar
  12. 12.
    Kanai, H., Chatterjee, I., Gandhi, O.P.: Human body impedance for electromagnetic hazard analysis in the VLF to MF band. IEEE Trans. Microw. Theory Tech. 32(8), 763–772 (1984)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Ahmed E. Khorshid
    • 1
    Email author
  • Ibrahim N. Alquaydheb
    • 1
  • Ahmed M. Eltawil
    • 1
  • Fadi Kurdahi
    • 1
  1. 1.University of California Irvine (UCI)IrvineUSA

Personalised recommendations