Advertisement

A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation

  • Inchul Choi
  • Na Young Kim
  • Chang S. NamEmail author
Chapter
  • 67 Downloads
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Each year, 795,000 stroke patients suffer a new or recurrent stroke and 235,000 severe traumatic brain injuries (TBIs) occur in the US. These patients are susceptible to a combination of significant motor, sensory, and cognitive deficits, and it becomes difficult or impossible for them to perform activities of daily living due to residual functional impairments. Recently, sensorimotor rhythm (SMR)-based brain–computer interface (BCI)-controlled functional electrical stimulation (FES) has been studied for restoration and rehabilitation of motor deficits. To provide future neuroergonomists with the limitations of current BCI-controlled FES research, this chapter presents the state-of-the-art SMR-based BCI-controlled FES technologies, such as current motor imagery (MI) training procedures and guidelines, an EEG-channel montage used to decode MI features, and brain features evoked by MI.

References

  1. Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008). Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface. In IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2390–2397.Google Scholar
  2. Ang, K. K., Guan, C., Ang, Kai Keng, & Guan, Cuntai. (2015). Brain-computer interface for neurorehabilitation of upper limb after stroke. Proceedings of the IEEE, 103(6), 944–953.CrossRefGoogle Scholar
  3. Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering, 4(2), R32–R57.CrossRefGoogle Scholar
  4. Berrar, D., Bradbury, I., & Dubitzky, W. (2006). Avoiding model selection bias in small-sample genomic datasets. Bioinformatics, 22(10), 1245–1250. Oxford Univ Press.Google Scholar
  5. Blanchard, G., & Blankertz, B. (2004). BCI competition 2003—Data set IIa: Spatial patterns of self-controlled brain rhythm modulations. IEEE Transactions on Biomedical Engineering, 51(6), 1062–1066.CrossRefGoogle Scholar
  6. Choi, I., Bond, K., Krusienski, D., & Nam, C. S. (2015). Comparison of stimulation patterns to elicit steady-state somatosensory evoked potentials (SSSEPs): Implications for hybrid and SSSEP-based BCIs. Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on (pp. 3122–3127).Google Scholar
  7. Choi, I., Bond, K., & Nam, C. S. (2016). A hybrid BCI-controlled FES system for hand-wrist motor function. IEEE International Conference on Systems, Man, and Cybernetics.Google Scholar
  8. Daly, J. J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., & Dohring, M. (2009). Feasibility of a new application of noninvasive brain computer interface (BCI): A case study of training for recovery of volitional motor control after stroke. Journal of Neurologic Physical Therapy, 33(4), 203–211.Google Scholar
  9. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
  10. Delorme, A., Makeig, S., & Sejnowski, T. (2001). Automatic artifact rejection for EEG data using high-order statistics and independent component analysis. Proceedings of the third international ICA conference (pp. 9–12).Google Scholar
  11. Doucet, B. M., Lam, A., & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med, 85(2), 201–215.Google Scholar
  12. Elnady, A. M., Zhang, X., Xiao, Z. G., Yong, X., Randhawa, B. K., Boyd, L., & Menon, C. (2015). A single-session preliminary evaluat on of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform. Frontiers in Human Neuroscience, 9, 168. Switzerland.Google Scholar
  13. Ferree, T. C., Clay, M. T., & Tucker, D. M. (2001). The spatial resolution of scalp EEG. Neurocomputing, 38–40, 1209–1216.CrossRefGoogle Scholar
  14. Forrester, B. J., & Petrofsky, J. S. (2004). Effect of electrode size, shape, and placement during electrical stimulation. Journal of Applied Research, 4(2), 346–354.Google Scholar
  15. Gordon, C. C., Churchill, T., Clauser, C. E., Bradtmiller, B., & McConville, J. T. (1989). Anthropometric survey of US army personnel: methods and summary statistics 1988.Google Scholar
  16. Gu, Y., Dremstrup, K., & Farina, D. (2009). Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clinical Neurophysiology, 120(8), 1596–1600. International Federation of Clinical Neurophysiology.Google Scholar
  17. Hamedi, M., Salleh, S.-H., & Noor, A. M. (2016). Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Computation, 28(6), 999–1041.MathSciNetCrossRefGoogle Scholar
  18. Hyvärinen, a, & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society, 13(4–5), 411–430.Google Scholar
  19. Kayser, J., & Tenke, C. E. (2003). Optimizing PCA methodology for ERP component identification and measurement: Theoretical rationale and empirical evaluation. Clinical Neurophysiology, 114(12), 2307–2325.CrossRefGoogle Scholar
  20. Kim, T., Kim, S., & Lee, B. (2016). Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: A randomized controlled trial. Occupational therapy international, 23(1), 39–47. England.Google Scholar
  21. Lawrence, M. (2009). Transcutaneous electrode technology for neuroprostheses, (18213).Google Scholar
  22. Lee, H., & Choi, S. (2003). PCA + HMM + SVM for EEG pattern classification. Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings., 1(2), 1–4.Google Scholar
  23. Liu, Y., Li, M., Zhang, H., Wang, H., Li, J., Jia, J., Wu, Y., et al. (2014). A tensor-based scheme for stroke patients’ motor imagery EEG analysis in BCI-FES rehabilitation training. Journal of neuroscience methods, 222, 238–249. Elsevier.Google Scholar
  24. Looned, R., Webb, J., Xiao, Z. G., & Menon, C. (2014). Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. Journal of neuroengineering and rehabilitation, 11, 51. England.Google Scholar
  25. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1–R13.CrossRefGoogle Scholar
  26. Lyons, G. M., Leane, G. E., Clarke-Moloney, M., O’Brien, J. V., & Grace, P. A. (2004). An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle. Medical Engineering & Physics, 26(10), 873–878.CrossRefGoogle Scholar
  27. McGie, S. C., Zariffa, J. J., Popovic, M. R., & Nagai, M. K. (2015). Short-term neuroplastic effects of brain-controlled and muscle-controlled electrical stimulation. Neuromodulation, 18(3), 233–240. United States.Google Scholar
  28. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1.CrossRefGoogle Scholar
  29. Mukaino, M., Ono, T., Shindo, K., Fujiwara, T., Ota, T., Kimura, A., Liu, M., et al. (2014). Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. Journal of rehabilitation medicine, 46(4), 378–382. Sweden: Medical Journals Limited.Google Scholar
  30. Müller, G. R. R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H. J. J., & Pfurtscheller, G. (2003). Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neuroscience Letters, 340(2), 143–147.CrossRefGoogle Scholar
  31. Nam, C. S., Lee, J., Bahn, S., Li, Y., & Choi, I. (2014). Brain-computer interface supported collaborative work. Proceedings of 5th International Brain-Computer Interface Meeting.Google Scholar
  32. Nam, C. S., Moore, M., Choi, I., & Li, Y. (2015). Designing better, cost-effective brain-computer interfaces. Ergonomics in Design: The Quarterly of Human Factors Applications, 23(4), 13–19. SAGE.Google Scholar
  33. Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors.Google Scholar
  34. Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff, J., Garraux, G., Luxen, A., et al. (2014). Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. NeuroImage: Clinical, 4, 687–694.CrossRefGoogle Scholar
  35. Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: fully automated statistical thresholding for EEG artifact rejection. Journal of neuroscience methods, 192(1), 152–162. Elsevier.Google Scholar
  36. Novi, Q., Guan, C., Dat, T. H., & Xue, P. (2007). Sub-band common spatial pattern (SBCSP) for brain-computer interface. Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, 204–207.Google Scholar
  37. Pfurtscheller, G., & Lopes, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRefGoogle Scholar
  38. Pfurtscheller, G., Müller-Putz, G. R., Pfurtscheller, J. J., Rupp, R. R., Muller-Putz, G. R., Pfurtscheller, J. J., Rupp, R. R., et al. (2005). EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP Journal on Applied Signal Processing, 2005(19), 3152–3155. Hindawi, USA.Google Scholar
  39. Pfurtscheller, G., Müller, G. R., Pfurtscheller, J. J., Gerner, H. J. J., Rupp, R. R., Muller, G. R., Pfurtscheller, J. J., et al. (2003). “Thought”—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience letters, 351(1), 33–36. Ireland.CrossRefGoogle Scholar
  40. Pfurtscheller, G., & Neuper, C. (2006). Future prospects of ERD/ERS in the context of brain—computer interface (BCI) developments. Progress in Brain Research, 159, 433–437.CrossRefGoogle Scholar
  41. Pfurtscheller, G., Solis-Escalante, T., Ortner, R., Linortner, P., & Muller-Putz, G. R. (2010). Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch”: A feasibility study towards a hybrid BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4), 409–414.CrossRefGoogle Scholar
  42. Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3), 21–45.CrossRefGoogle Scholar
  43. Powers, J. C., Bieliaieva, K., Wu, S., & Nam, C. S. (2015). The human factors and ergonomics of P300-based brain-computer interfaces. Brain sciences, 5(3), 318–56. Switzerland.Google Scholar
  44. Reynolds, C., Osuagwu, B. A., & Vuckovic, A. (2015). Influence of motor imagination on cortical activation during functional electrical stimulation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 126(7), 1360–1369. Netherlands.Google Scholar
  45. Rohm, M., Muller-Putz, G. R., Kreilinger, A., von Ascheberg, A., & Rupp, R. (2010). A hybrid-Brain Computer Interface for control of a reaching and grasping neuroprosthesis. Biomedizinische Technik, 55(suppl. 1). Fachverlag Schiele & Schon GmbH, Germany.Google Scholar
  46. Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G. R., Rupp, R. R. R., et al. (2013). Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artificial Intelligence in Medicine, 59(2), 133–142. Netherlands: Elsevier Science B.V., Netherlands.Google Scholar
  47. Roset, S. A., Gant, K., Prasad, A., & Sanchez, J. C. (2014). An adaptive brain actuated system for augmenting rehabilitation. Frontiers in neuroscience, 8, 415. Switzerland.Google Scholar
  48. Rosner, B. (2015). Fundamentals of biostatistics. Nelson Education.Google Scholar
  49. Schalk, G., & Mellinger, J. (2010). A practical guide to brain–computer interfacing with BCI2000: General-purpose software for brain-computer interface research, data acquisition, stimulus presentation, and brain monitoring. Springer Science & Business Media.Google Scholar
  50. Sun, S., Zhang, C., & Zhang, D. (2007). An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognition Letters, 28(15), 2157–2163.CrossRefGoogle Scholar
  51. Tan, H. G., Shee, C. Y., Kong, K. H., Guan, C., Ang, W. T., et al. (2011). EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients. Frontiers of Mechanical Engineering, 6(1), 71–81. SP Higher Education Press, Germany.Google Scholar
  52. Vuckovic, A., Wallace, L., & Allan, D. B. (2015). Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. Journal of neurologic physical therapy : JNPT, 39(1), 3–14. United States.Google Scholar
  53. Wang, D., Miao, D., & Blohm, G. (2012). Multi-class motor imagery EEG decoding for brain-computer interfaces. Frontiers in Neuroscience, 6(OCT), 1–13.Google Scholar
  54. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.CrossRefGoogle Scholar
  55. Young, B. M., Nigogosyan, Z., Walton, L. M., Remsik, A., Song, J., Nair, V. A., Tyler, M. E., et al. (2015). Dose-response relationships using brain-computer interface technology impact stroke rehabilitation. Frontiers in human neuroscience, 9, 361. Switzerland.Google Scholar
  56. Young, B. M., Nigogosyan, Z., Nair, V. A., Walton, L. M., Song, J., Tyler, M. E., Edwards, D. F., et al. (2014). Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Frontiers in neuroengineering, 7, 18. Switzerland.Google Scholar
  57. Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., Staiger-Salzer, P., et al. (2011). A brain-computer interface as input channel for a standard assistive technology software. Clinical EEG and neuroscience, 42(4), 236–244.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Edward P. Fitts Department of Industrial & Systems EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations