Nudges Driven Networks: Towards More Acceptable Recommendations for Inducing Targeted Social Communities

  • Italo ZoppisEmail author
  • Sara Manzoni
  • Giancarlo Mauri
  • Giada Pietrabissa
  • Andrea Trentini
  • Daniela Micucci
  • Gianluca Castelnuovo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11938)


Mind Cognitive Impairment is one of the most common clinical manifestations affecting the elderly. In this paper, we report the work in progress (in the frame of our SENIOR project) to provide elderly with new Nudge theory driven advices for influencing their interest to a conscious and functional participation to “targeted” social communities where suggestions on the overall wellness can be shared, recognized as usefull by users and supported by health care providers.


Nudge theory Optimization problems Community identification Heuristic algorithms SENIOR project 


  1. 1.
    Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003)CrossRefGoogle Scholar
  2. 2.
    Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Machine Learning, Proceedings of the 12th International Conference on Machine Learning, Tahoe City, California, USA, pp. 38–46 (1995)Google Scholar
  3. 3.
    Barabási, A.-L., Albert, R.: GA: a package for genetic algorithms in R. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bollobas, B.: Random Graphs. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  5. 5.
    Cava, C., Zoppis, I., Gariboldi, M., Castiglioni, I., Mauri, G., Antoniotti, M.: Copy-number alterations for tumor progression inference, pp. 104–109 (2013)CrossRefGoogle Scholar
  6. 6.
    Cava, C., Zoppis, I., Gariboldi, M., Castiglioni, I., Mauri, G., Antoniotti, M.: Combined analysis of chromosomal instabilities and gene expression for colon cancer progression inference. J. Clin. Bioinform. 4, 2 (2014)CrossRefGoogle Scholar
  7. 7.
    Dondi, R., Mauri, G., Zoppis, I.: Clique editing to support case versus control discrimination. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016. SIST, vol. 56, pp. 27–36. Springer, Cham (2016). Scholar
  8. 8.
    Dondi, R., Mauri, G., Zoppis, I.: Orthology correction for gene tree reconstruction: theoretical and experimental results. Procedia Comput. Sci. 108, 1115–1124 (2017)CrossRefGoogle Scholar
  9. 9.
    Dondi, R., Mauri, G., Zoppis, I.: On the tractability of finding disjoint clubs in a network. Theor. Comput. Sci. 777, 243–251 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53. Springer, Heidelberg (2003). Scholar
  11. 11.
    He, X., Chen, T., Kan, M.-Y., Chen, X.: TriRank: review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670. ACM (2015)Google Scholar
  12. 12.
    Heckel, R., Vlachos, M., Parnell, T., Dünner, C.: Scalable and interpretable product recommendations via overlapping co-clustering. In: IEEE 33rd International Conference on Data Engineering (ICDE), pp. 1033–1044. IEEE (2017)Google Scholar
  13. 13.
    Hüffner, F., Komusiewicz, C., Nichterlein, A.: Editing graphs into few cliques: complexity, approximation, and kernelization schemes. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 410–421. Springer, Cham (2015). Scholar
  14. 14.
    Kolaczyk, E.D.: Statistical Analysis of Network Data: Methods and Models. Springer, New York (2009). Scholar
  15. 15.
    Leonard, T.C., Thaler,R.H., Sunstein, C.R.: Nudge: improving decisions about health, wealth, and happiness (2008)Google Scholar
  16. 16.
    Long, B., Zhang, Z., Yu, P.S.: Relational Data Clustering: Models, Algorithms, and Applications. Chapman & Hall/CRC, Boca Raton (2010)CrossRefGoogle Scholar
  17. 17.
    Mitchell, M.: An Introduction to Genetic Algorithms. Complex Adaptive Systems. MIT press, Cambridge (1996)Google Scholar
  18. 18.
    Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999)CrossRefGoogle Scholar
  19. 19.
    Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)CrossRefGoogle Scholar
  20. 20.
    Sharan, R., Shamir, R.: Center CLICK: a clustering algorithm with applications to gene expression analysis. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, La Jolla/San Diego, CA, USA, 19–23 August 2000, pp. 307–316 (2000)Google Scholar
  21. 21.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. 100, 12123–12128 (2003)CrossRefGoogle Scholar
  22. 22.
    Wang, X., He, X., Feng, F., Nie, L., Chua, T.-S.: TEM: tree-enhanced embedding model for explainable recommendation. In: Proceedings of the 2018 WWW Conference on WWW, pp. 1543–1552. International WWW Conference Steering Committee (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Italo Zoppis
    • 1
    Email author
  • Sara Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  • Giada Pietrabissa
    • 2
  • Andrea Trentini
    • 3
  • Daniela Micucci
    • 1
  • Gianluca Castelnuovo
    • 2
  1. 1.Department of Computer ScienceUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Department of PsychologyCatholic University of MilanMilanItaly
  3. 3.Department of Computer ScienceUniveristà degli Studi di MilanoMilanItaly

Personalised recommendations