Advertisement

A Self-organized Criticality Method for the Study of Color-Avoiding Percolation

  • Michele Giusfredi
  • Franco BagnoliEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11938)

Abstract

We study the problem of color-avoiding percolation in a network, i.e., the problem of finding a path that avoids a certain number of colors, associated to vulnerabilities of nodes or links.

We show that this problem can be formulated as a self-organized critical problem, in which the asymptotic phase space can be obtained in one simulation. By using the fragment method, we are able to obtain the phase diagram for many problems related to color-avoiding percolation, showing in particular that results obtained for scale-free networks can be recovered using the dilution of the rule on regular lattices.

References

  1. 1.
    Bagnoli, F., Palmerini, P., Rechtman, R.: Algorithmic mapping from criticalityto self-organized criticality. Phys. Rev. E 55(4), 3970–3976 (1997).  https://doi.org/10.1103/PhysRevE.55.3970. https://link.aps.org/doi/10.1103/PhysRevE.55.3970CrossRefGoogle Scholar
  2. 2.
    Bagnoli, F., Bellini, E., Massaro, E., Rechtman, R.: Percolation and internet science. Future Internet 11(2), 35 (2019).  https://doi.org/10.3390/fi11020035CrossRefGoogle Scholar
  3. 3.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple modelof evolution. Phys. Rev. Lett. 71(24), 4083–4086 (1993).  https://doi.org/10.1103/PhysRevLett.71.4083. https://link.aps.org/doi/10.1103/PhysRevLett.71.4083CrossRefGoogle Scholar
  4. 4.
    Kadović, A., Krause, S.M., Caldarelli, G., Zlatic, V.: Bond and site color-avoiding percolation in scale-free networks. Phys. Rev. E 98(6), 062308 (2018).  https://doi.org/10.1103/PhysRevE.98.062308. https://link.aps.org/doi/10.1103/PhysRevE.98.062308CrossRefGoogle Scholar
  5. 5.
    Grassberger, P., Zhang, Y.C.: Self-organized formulation of standard percolation phenomena. Phys. A 224(1), 169–179 (1996).  https://doi.org/10.1016/0378-4371(95)00321-5. http://www.sciencedirect.com/science/article/pii/0378437195003215, dynamics of Complex SystemsCrossRefGoogle Scholar
  6. 6.
    Krause, S.M., Danziger, M.M., Zlatić, V.: Hidden connectivity in networks with vulnerable classes of nodes. Phys. Rev. X 6(4), 041022 (2016).  https://doi.org/10.1103/PhysRevX.6.041022CrossRefGoogle Scholar
  7. 7.
    Krause, S.M., Danziger, M.M., Zlatić, V.: Color-avoiding percolation. Phys. Rev. E 96(2), 022313 (2017).  https://doi.org/10.1103/PhysRevE.96.022313CrossRefGoogle Scholar
  8. 8.
    Wilkinson, D., Willemsen, J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A: Math. Gen. 16(14), 3365–3376 (1983).  https://doi.org/10.1088/0305-4470/16/14/028MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and CSDCUniversity of FlorenceSesto FiorentinoItaly
  2. 2.INFN, sez. FirenzeFlorenceItaly

Personalised recommendations