Arsenic Toxicity and Molecular Mechanism of Arsenic Tolerance in Different Members of Brassicaceae

  • Aryadeep Roychoudhury
  • S. Krishnamoorthi
  • Rupam Paul


Arsenic (As) is a predominant contaminant in soil and water in many regions of the world, including China, India and Bangladesh. The metalloid is capable of accumulating to toxic levels in many plants, including crops, and can severely reduce the yield and quality of the same. Arsenic is a potent carcinogen, and causes severe and chronic toxicity in humans (arsenicosis), making the contamination of soil and plants with As an additional source of concern. Certain plants are able to tolerate high levels of metalloid without showing symptoms of toxicity. A further specialized variety of heavy metal–tolerant plants are the hyperaccumulators, which can accumulate high levels of the toxicant endogenously, without compromising its own growth. Brassica is an important genus of oil crops belonging to the family Brassicaceae that is cultivated worldwide. Several members of this family show significant potential in accumulating As from contaminated soil. Various mechanisms of As transport, metabolism and tolerance in plants are presented; and the potential of utilization of Brassica in phytoremediation of As-contaminated soil has been discussed. A brief outline of the different tolerance pathways exhibited by Brassica at the molecular level deciphered to date is also highlighted in detail. Further studies into the molecular mechanisms of tolerance and accumulation in Brassica may offer an economically productive mode of phytoremediation of As-contaminated soil utilizing different species of Brassica.


Arsenic Toxicity Tolerance mechanism Hyperaccumulator Brassica Brassicaceae Phytoremediation 



Financial assistance from Council of Scientific and Industrial Research (CSIR), Government of India, through the research grant [38(1387)/14/EMR-II], Science and Engineering Research Board, Government of India through the grant [EMR/2016/004799] and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.


  1. Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289CrossRefGoogle Scholar
  2. Abedin MJ, Cotter-Howells J, Meharg AA (2002a) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240:311CrossRefGoogle Scholar
  3. Abedin MJ, Feldmann J, Meharg AA (2002b) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128PubMedPubMedCentralCrossRefGoogle Scholar
  4. Abercrombie JM, Halfhill MD, Rajan P, Rao MR, Saxton AM, Yuan JS, Stewart CNJ (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576PubMedCrossRefGoogle Scholar
  6. Ansari MKA, Shao HB, Umar S, Ahmed A, Ansari SH, Iqbal M, Owens G (2013) Screening B. juncea L. genotypes for phytoremediating As-contaminated soils. Clean 41:195–201Google Scholar
  7. Artus NN (2006) Arsenic and cadmium phytoextraction potential of crambe compared with Indian mustard. J Plant Nutr 29:667–679CrossRefGoogle Scholar
  8. Avron M, Jagendorf A (1959) Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J Biol Chem 234:967–972PubMedGoogle Scholar
  9. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34CrossRefGoogle Scholar
  10. Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bidirectional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38CrossRefGoogle Scholar
  12. Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carbonell-Barrachina AA, Burló F, Valero D, López E, Martínez-Romero D, Martínez-Sánchez J (1999) Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. Agric Food Chem 47:2288–2294CrossRefGoogle Scholar
  14. Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Tc M, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, Leo Del Puerto Y, Mateos I, Rojo E, Hernández LE, Jarillo JA, Piñeiro M, Paz-Ares J, Leyva A (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957PubMedPubMedCentralCrossRefGoogle Scholar
  15. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702PubMedCrossRefGoogle Scholar
  17. Chaturvedi I (2006) Effects of arsenic concentrations and forms on growth and arsenic uptake and accumulation by Indian mustard (Brassica juncea L.) genotypes. J Cent Eur Agric 7:31–40Google Scholar
  18. Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362PubMedCrossRefGoogle Scholar
  19. De Freitas-Silva L, Araújo TO, daSilva LC, de Oliveira JO, Araujo JM (2016) Arsenic accumulation in Brassicaceae seedlings and its effects on growth and plant anatomy. Ecotoxicol Environ Saf 124:1–9PubMedCrossRefGoogle Scholar
  20. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to brassica species: implications for phytoremediation. J Environ Qual 26:776–781CrossRefGoogle Scholar
  22. Farooq MA, Li L, Ali B, Gill RA, Wang J, Ali S, Gill MB, Zhou W (2015) Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ Sci Pollut Res Int 22:10699–10712PubMedCrossRefGoogle Scholar
  23. Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W (2016a) Subcellular distribution, modulation of antioxidant and stress related genes response to arsenic in Brassica napus L. Ecotoxicology 25:350–366PubMedCrossRefGoogle Scholar
  24. Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, He S, Zhou W (2016b) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 7:468PubMedPubMedCentralCrossRefGoogle Scholar
  25. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182PubMedPubMedCentralCrossRefGoogle Scholar
  26. Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60PubMedGoogle Scholar
  27. Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369PubMedCrossRefGoogle Scholar
  28. Gresser MJ (1981) ADP-arsenate formation by submitochondrial particles under phosphorylating conditions. J Biol Chem 256:5981–5983PubMedGoogle Scholar
  29. Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in the levels of phytochelatins and related metal binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256PubMedCrossRefGoogle Scholar
  30. Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN, Yang XE, Huang H, Inouhe M (2008) Arsenic accumulation in roots and shoots vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29:281–286PubMedGoogle Scholar
  31. Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208PubMedCrossRefGoogle Scholar
  32. Gupta DK, Srivastava S, Huang HG, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals, soil biology, vol 30. Springer, Heidelberg, pp 169–179CrossRefGoogle Scholar
  33. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  34. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper-and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722CrossRefGoogle Scholar
  35. Hernandez-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40PubMedCrossRefGoogle Scholar
  36. Huang LX, Yao LX, He ZH, Zhou CM, Li GL, Yang BM, Li YF (2013) Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:1546–1555PubMedCrossRefGoogle Scholar
  37. Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulation fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  38. Irtelli B, Navari-Izzo F (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303:105–113CrossRefGoogle Scholar
  39. Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628PubMedCrossRefGoogle Scholar
  40. Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49PubMedCrossRefGoogle Scholar
  41. Kanwar MK, Bhardwaj R, Chowdhary SP, Arora P, Sharma P, Kumar S (2013) Isolation and characterization of 24-Epibrassinolide from Brassica juncea L. and its effects on growth, Ni uptake and antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol Plant 35:1351–1362CrossRefGoogle Scholar
  42. Kanwar MK, Poonam, Bhardwaj R (2015) Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicol Environ Saf 115:119–125PubMedCrossRefGoogle Scholar
  43. Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic-accumulating, hypertolerant brassica, Isatis capadocica. New Phytol 184:41–47PubMedCrossRefGoogle Scholar
  44. Kish MM, Viola RE (1999) Oxyanion specificity of aspartate beta-semialdehyde dehydrogenase. Inorg Chem 38:818–820PubMedCrossRefGoogle Scholar
  45. Kitchin KT, Wallace K (2006) Dissociation of arsenite-peptide complexes: triphasic nature, rate constants, half-lives and biological importance. J Biochem Mol Toxicol 20:48–56PubMedCrossRefGoogle Scholar
  46. Kubota J (1975) Areas of molybdenum toxicity to grazing animals in the western state. J Range Manag 28:252–256CrossRefGoogle Scholar
  47. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lim MP, McBride MB (2015) Arsenic and lead uptake by Brassicas grown on an old orchard site. J Hazard Mater 299:656–663PubMedCrossRefGoogle Scholar
  49. Lin S, Cullen WR, Thomas DJ (1999) Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 12:924–930PubMedCrossRefGoogle Scholar
  50. Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signalling. Plant Physiol 147:732–746PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu Z, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318PubMedCrossRefGoogle Scholar
  52. Liu Z, Styblo M, Rosen BP (2006) Methylarsonous acid transport by aquaglyceroporins. Environ Health Perspect 114:527–531PubMedCrossRefGoogle Scholar
  53. Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu Q, Zheng C, Hu CX, Tan Q, Sun HX, Su JJ (2012) Effects of high concentrations of soil arsenic on the growth of winter wheat (Triticum aestivum L.) and rape (Brassica napus L.). Plant Soil Environ 58:22–27CrossRefGoogle Scholar
  55. Logoteta B, Xu XY, Macnair MR, McGrath SP, Zhao FJ (2009) Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. New Phytol 183:340–348PubMedCrossRefGoogle Scholar
  56. Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672PubMedCrossRefGoogle Scholar
  57. Ma JF, Mitani N, Yamaji N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mahmud R, Inoue N, Kasajima SY, Shaheen R (2008) Assessment of potential indigenous plant species for the phytoremediation of severe arsenic contaminated areas of Bangladesh. Int J Phytoremediation 10:117–130PubMedCrossRefGoogle Scholar
  59. Marin A, Pezeshki S, Masscheleyn P, Choi H (1993) Effect of dymethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of Indian mustard plants. J Plant Nutr 16:865–880CrossRefGoogle Scholar
  60. Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969CrossRefGoogle Scholar
  61. Meharg AA, Macnair MR (1992) Suppression of the high-affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524CrossRefGoogle Scholar
  62. Meharg AA, Rahman MDM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234PubMedCrossRefGoogle Scholar
  63. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  64. Moore SA, Moennich DM, Gresser MJ (1983) Synthesis and hydrolysis of ADP-arsenate by beef heart submitochondrial particles. J Biol Chem 258:6266–6271PubMedGoogle Scholar
  65. Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37PubMedGoogle Scholar
  66. Mourata MP, Moreira IN, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16:17975–17998CrossRefGoogle Scholar
  67. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163PubMedGoogle Scholar
  68. Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276PubMedPubMedCentralCrossRefGoogle Scholar
  69. Orsit BA, Cleland WW (1972) Inhibition and kinetic mechanism of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 11:102–109CrossRefGoogle Scholar
  70. Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629PubMedCrossRefGoogle Scholar
  71. Park J, Kim JY, Kim KW (2012) Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosyst Eng 15:9–17CrossRefGoogle Scholar
  72. Pathare P, Srivastava S, Suprassana P (2013) Evaluation of effects of arsenic on carbon, nitrogen, and sulphur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol Plant 35:3377–3389CrossRefGoogle Scholar
  73. Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014PubMedCrossRefGoogle Scholar
  76. Potera C (2010) Remediation: the gene behind arsenic hyperaccumulation. Environ Health Perspect 118:A337PubMedPubMedCentralGoogle Scholar
  77. Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation 10:61–72PubMedCrossRefGoogle Scholar
  78. Qin J, Rosen BP, Zhang Y, Wang GJ, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080PubMedPubMedCentralCrossRefGoogle Scholar
  79. Qin J, Lehr CR, Yuan CG, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermo acidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217PubMedPubMedCentralCrossRefGoogle Scholar
  80. Quartacci MF, Irtelli B, Baker AJ, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920–1928PubMedCrossRefGoogle Scholar
  81. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  82. Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Heliannthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558PubMedCrossRefGoogle Scholar
  83. Raab A, Williams PA, Meharg A, Feldman J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203CrossRefGoogle Scholar
  84. Rahman M, Haq N, Williams ID (2016) Phytoaccumulation of arsenic, cadmium and lead by Brassica juncea parents and their F1 hybrids. J Environ Prot 7:613–622CrossRefGoogle Scholar
  85. Rai AN, Srivastava S, Paladi R, Suprasanna P (2012) Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.). Protoplasma 249:725–736PubMedCrossRefGoogle Scholar
  86. Ramadan D, Cline DJ, Bai S, Thorpe C, Schneider JP (2007) Effects of As(III) binding on β-hairpin structure. J Am Chem Soc 129:2981–2988PubMedCrossRefGoogle Scholar
  87. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefGoogle Scholar
  88. Reeves R, Baker A (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  89. Rosen BP, Ajees AA, McDermott TR (2011) Life and death with arsenic. BioEssays 33:350–357PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebestia acuminate. Phytochemistry 47:339–347PubMedCrossRefGoogle Scholar
  91. Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1636–1644CrossRefGoogle Scholar
  92. Sankaran RP, Ebbs SD (2008) Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol Plant 132:69–78PubMedGoogle Scholar
  93. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 53:2381–2392PubMedCrossRefGoogle Scholar
  94. Schwerdtle T, Walter I, Hartwig A (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair 2:1449–1463PubMedCrossRefGoogle Scholar
  95. Shaibur MR, Kawai S (2009) Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach. Environ Exp Bot 67:65–70CrossRefGoogle Scholar
  96. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642PubMedCrossRefGoogle Scholar
  97. Singh A, Prasad P (2014) Evaluation of potential of Brassica juncea for removal of arsenic from hydroponic solution. Int J Curr Microbiol App Sci 3:246–252Google Scholar
  98. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  99. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192PubMedPubMedCentralCrossRefGoogle Scholar
  100. Srivastava S, D’Souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.) Royle. Ecotoxicol Environ Saf 73:1314–1322PubMedCrossRefGoogle Scholar
  101. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315PubMedCrossRefGoogle Scholar
  102. Stoeva N, Berova M, Zlatev Z (2003) Physiological response of maize to arsenic contamination. Biol Plantarum 47:449–452CrossRefGoogle Scholar
  103. Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33PubMedCrossRefGoogle Scholar
  104. Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134CrossRefGoogle Scholar
  105. Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509PubMedPubMedCentralCrossRefGoogle Scholar
  106. Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457PubMedCrossRefGoogle Scholar
  107. Tang Z, Lv Y, Chen F, Zhang W, Rosen BP, Zhao F (2016) Arsenic methylation in Arabidopsis thaliana expressing an algal arsenite methyltransferase gene increases arsenic phytotoxicity. J Agric Food Chem 64:2674–2681PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165PubMedCrossRefGoogle Scholar
  109. Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251CrossRefGoogle Scholar
  110. Ultra VU, Tanaka S, Sakurai K, Iwasaki K (2007) Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–41CrossRefGoogle Scholar
  111. VanBreusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390CrossRefGoogle Scholar
  112. Verma S, Verma PK, Pande V, Tripathi RD, Chakrabarty D (2016) Transgenic Arabidopsis thaliana expressing fungal arsenic methyltransferase gene (WaarsM) showed enhanced arsenic tolerance via volatilization. Environ Exp Bot 132:113–120CrossRefGoogle Scholar
  113. Vetterlein D, Szegedi K, Ackermann J, Mattusch J, Neue HU, Tanneberg H, Jahn R (2007) Competitive mobilization of phosphate and arsenate associated with goethite by root activity. J Environ Qual 36:1811–1820PubMedCrossRefGoogle Scholar
  114. Wang HB, Xie F, Yao YZ, Zhao B, Xiao QQ, Pan YH, Wang HJ (2012) The effects of arsenic and induced phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. Environ Exp Bot 75:298–306CrossRefGoogle Scholar
  115. Wu JH, Zhang R, Lilley RM (2002) Methylation of arsenic in vitro by cell extracts from bentgrass (Agrostis tenuis): effect of acute exposure of plants to arsenate. Funct Plant Biol 29:73–80CrossRefGoogle Scholar
  116. Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wysocki R, Bobrowicz P, Ułaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066PubMedCrossRefGoogle Scholar
  118. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599PubMedCrossRefGoogle Scholar
  119. Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156CrossRefGoogle Scholar
  121. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794PubMedCrossRefGoogle Scholar
  122. Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aryadeep Roychoudhury
    • 1
  • S. Krishnamoorthi
    • 1
  • Rupam Paul
    • 1
  1. 1.Post Graduate Department of BiotechnologySt. Xavier’s College (Autonomous)KolkataIndia

Personalised recommendations