Genetic Improvement of Oil Quality Using Molecular Techniques in Brassica juncea

  • Yashpal
  • Navinder Saini
  • Naveen Singh
  • Rajat Chaudhary
  • Sangita Yadav
  • Rajendra Singh
  • Sujata Vasudev
  • D. K. Yadava


Oil quality is a complex character determined by several inter-reliant indices, such as nutritional, cooking parameters, consumer preference, palatability, industrial suitability, physical appearance, and shelf life. Rapeseed-mustard oil has the lowest concentration (~7%) of saturated fatty acids (SAFAs) and a substantial amount of polyunsaturated fatty acids (PUFAs). The presence of the high amount of PUFAs does not mitigate the detrimental effects of the presence of high erucic acid (~22–52%) and low amount of oleic acid (~8–23%) in mustard oil. Whereas the excessive intake of erucic acid causes diseases like myocardial fibrosis in adults and lipidosis in children, the lower levels of oleic acid decrease oxidative stability, resulting in the reduction of the shelf life and thermostability of the oil. The mustard oil cake provides better amino acid composition than soybean meal to monogastric digestive tracts; however, it’s use as animal feed is restricted due to the presence of high content of sulfur-rich glucosinolates which yield toxic and goitrogenic cleavage products. The α-tocopherol is biologically the most active form of vitamin E, and Brassica oil has low α-tocopherol. Therefore, enhancing oil quality by altering the composition of Brassica oil either by increasing the oleic acid and α-tocopherol or by decreasing the erucic acid and glucosinolate content is the important breeding objectives. The latest molecular discoveries decipher the biosynthesis pathways of the molecules and help in altering the compositions. This chapter reviews the molecular interventions employed in enhancing the mustard oil quality.


Brassica juncea Oil quality Erucic acid Glucosinolates Genetic improvement 


  1. Ackman RG, Eaton CA, Sipos JC, Loew FM, Hancock D (1977) A comparison of fatty acids from high levels of docosenoic acids of rapeseed oil (erucic acid) and of partially hydrogenated fish oil (primarily cetoleic acid) in a non-human primate species in a short-term exploratory study. Bibl Nutr Dieta 25:170–185Google Scholar
  2. Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J 11:855–866CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhatia V, Alok A (2014) Molecular marker analysis of the linkage drag around the FAE1 loci of Brassica juncea during conventional backcross breeding. J Crop Sci Biotechnol 17:147–154CrossRefGoogle Scholar
  5. Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burns MJ, Barnes SR, Bowman JG, Clarke MH, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J GenGenomics 37:231–240Google Scholar
  8. Cao S, Zhou XR, Wood CC, Green AG, Singh SP, Liu L, Liu Q (2013) A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 13:5CrossRefPubMedPubMedCentralGoogle Scholar
  9. Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chauhan JS, Bhadauria VP, Singh M, Singh KH, Kumar A (2007) Quality characteristics and their interrelationships in Indian rapeseed-mustard (Brassica sp.) varieties. Indian J Agric Sci 77:616–620Google Scholar
  11. Chauhan JS, Singh KH, Singh VV, Kumar S (2011) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sci 81:1093–1109Google Scholar
  12. Chiron H, Wilmer J, Lucas MO, Nesi N, Delseny M, Devic M, Roscoe TJ (2015) Regulation of FATTY ACIDELONGATION 1 expression in embryonic and vascular tissues of Brassica napus. Plant Mol Biol 88:65–83CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8:1789CrossRefPubMedPubMedCentralGoogle Scholar
  14. Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162:245–250CrossRefGoogle Scholar
  15. Downey RK (1964) A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can J Plant Sci 44(3):295CrossRefGoogle Scholar
  16. Downey RK, Craig BM (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc 41:475–478CrossRefGoogle Scholar
  17. Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977CrossRefGoogle Scholar
  18. Engel E, Baty C, le Corre D, Souchon I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50:6459–6467CrossRefGoogle Scholar
  19. Fenwick GR, Griffiths NM, Heaney RK (1983) Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): the role of glucosinolates and their breakdown products. J Sci Food Agric 34:73–80CrossRefGoogle Scholar
  20. Fourmann M, Barr P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to ArabidopsisFAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858CrossRefGoogle Scholar
  21. Friedt W, Snowdon R (2009) Oilseed rape. In: Vollmann J, Rajcan I (eds) Oil crops, handbook of plant breeding. Springer, New York, p 92Google Scholar
  22. Fritsche S, Wang X, Li J, Stich B, Kopisch-Obuch FJ, Endrigkeit J, Leckband G, Dreyer F, Friedt W, Meng J, Jung C (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front Plant Sci 3:129CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fukai E, Karim MM, Shea DJ, Tonu NN, Falk KC, Funaki T, Okazaki K (2019) An LTR retrotransposon insertion was the cause of world’s first low erucic acid Brassica rapa oilseed cultivar. Mol Breed 39(15):15–27Google Scholar
  24. Ge Y, Chang Y, Xu WL, Cui CS, Qu SP (2015) Sequence variations in the FAD2 gene in seeded pumpkins. GenMol Res 14:17482–17488Google Scholar
  25. Getinet A, Rakow G, Raney JP, Downey RK (1997) The inheritance of erucic acid content in Ethiopian mustard. Can J Plant Sci 77:33–41Google Scholar
  26. Gland A (1985) Inheritance of content and pattern of glucosinolates in combinations of resynthesized rapeseed x rapeseed cultivars. In: Sørensen H (ed) Advances in the production and utilization of cruciferous crops. Martinus Nijhoff/Dr W Junk Publ, Boston, pp 278–285Google Scholar
  27. Goffman FD, Becker HC (1999) Inheritance of tocopherol contents in seeds of rapeseed (Brassica napus L.). In: Proceedings of 10th rapeseed congress, ChinaGoogle Scholar
  28. Goffman FD, Becker HC (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125:189–196CrossRefGoogle Scholar
  29. Gopalan C, Krishnamurthi D, Shenolikar IS, Krishnamachari KA (1974) Myocardial changes in monkeys fed mustard oil. Ann Nutr Metab 16:352–365CrossRefGoogle Scholar
  30. Griffiths DW, Birch AN, Hillman JR (1998) Antinutritional compounds in the brassica analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotech 73:1–18CrossRefGoogle Scholar
  31. Griffiths DW, Deighton N, Birch AN, Patrian B, Baur R, Städler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guan LL, Wang YB, Shen H, Hou K, Xu YW, Wu W (2012) Molecular cloning and expression analysis of genes encoding two microsomal oleate desaturases (FAD2) from safflower (Carthamus tinctorius L.). Plant Mol Biol Rep 30:139–148CrossRefGoogle Scholar
  34. Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gupta S, Sangha MK, Kaur G, Banga S, Gupta M, Kumar H, Banga SS (2015) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 201:345–356CrossRefGoogle Scholar
  36. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333CrossRefPubMedPubMedCentralGoogle Scholar
  37. Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239CrossRefPubMedPubMedCentralGoogle Scholar
  38. Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus). Can J Plant Sci 44:104–111CrossRefGoogle Scholar
  39. Herńndez ML, Padilla MN, Mancha M, Martinez-Rivas JM (2009) Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J Agric Food Chem 57:6199–6206CrossRefGoogle Scholar
  40. Hitz WD, Carlson TJ, Booth Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid [omega]-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C (2009) Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol Biol 10:49–65CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jagannath A, Sodhi YS, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma PK, Pradhan AK, Pental D (2011) Eliminating expression of erucic acid-encoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103CrossRefPubMedPubMedCentralGoogle Scholar
  45. James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319PubMedPubMedCentralGoogle Scholar
  46. Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941CrossRefGoogle Scholar
  47. Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot 59:2043–2056CrossRefPubMedPubMedCentralGoogle Scholar
  48. Karim MM, Tonu NN, Hossain MS, Funaki T, Meah MB, Hossain DM, Asadud-doullah M, Fukai E, Okazaki K (2016) Marker-assisted selection of low erucic acid quantity in short duration Brassica rapa. Euphytica 208:535–544CrossRefGoogle Scholar
  49. Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem 269:5625–5631CrossRefPubMedPubMedCentralGoogle Scholar
  50. Katavic V, Barton DL, Giblin EM, Reed DW, Kumar A, Taylor DC (2004) Gaining insight into the role of serine 282 in B. napusFAE1 condensing enzyme. FEBS Lett 562:118–124CrossRefPubMedPubMedCentralGoogle Scholar
  51. Khadake RM, Ranjekar PK, Harsulkar AM (2009) Cloning of a novel omega-6 desaturase from flax (Linum usitatissimum L.) and its functional analysis in Saccharomyces cerevisiae. Mol Biotechnol 42:168–174CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kim Y, Li X, Kim SJ, Kim H, Lee J, Kim H, Park S (2013) MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Molecules 18:8682–8695CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kirk JT, Hurlstone CJ (1983) Variation and inheritance of erucic acid content in Brassica juncea. Z Pflanzenzuchtg 90:331–338Google Scholar
  55. Kirk JT, Oram RN (1981) Isolation of erucic acid free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J Aust Inst Agric Sci 47:51–52Google Scholar
  56. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kondra ZP, Thomas PM (1974) Inheritance of oleic, linoleic and linolenic acids in seed oil of rapeseed (Brassica napus). Can J Plant Sci 55:205–210CrossRefGoogle Scholar
  58. Kongcharoensuntorn W (2001) Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene. Ph.D. thesis, University of North Texas, Denton, p 162Google Scholar
  59. Lassner MW, Lardizabal K, Metz JG (1996) A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292PubMedPubMedCentralGoogle Scholar
  60. Lee KR, Sohn SI, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU (2013) Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 531:253–262CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lee YH, Park W, Kim KS, Jang YS, Lee JE, Cha YL, Moon YH, Song YS, Lee K (2018) EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2-2) results in elevated oleic acid content in rapeseed (Brassica napus L.). Euphytica 214:28CrossRefGoogle Scholar
  62. Lethenborg P, Li PW, Sørensen H, Hill J, Stølen O, Rahman MH, Poulsen MH (1995) Inheritance of glucosinolates in oilseed rape. In: Proceedings of 9th international rapeseed congress (GCIRC), Cambridge, pp 726–728Google Scholar
  63. Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526CrossRefPubMedPubMedCentralGoogle Scholar
  64. Li D, Lei Z, Xue J, Zhou G, Hang Y, Sun X (2017) Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella. Planta 246:763–778CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liao P, Chen X, Wang M, Bach TJ, Chye ML (2018) Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE 1 in transgenic tomato. Plant Biotechnol J 16:784–796CrossRefPubMedPubMedCentralGoogle Scholar
  66. Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP (2001) Evolution of the FAD2-1 fatty acid desaturase 5′ UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92–102CrossRefPubMedPubMedCentralGoogle Scholar
  67. Love HK, Rakow G, Raney JP, Downey RK (1990) Genetic control of 2-propenyl and 3-butenyl glucosinolate synthesis in mustard. Can J Plant Sci 70:425–429CrossRefGoogle Scholar
  68. Lühs WW, Voss A, Seyis F, Friedt W (1999) Molecular genetics of erucic acid content in the genus Brassica. In: Proceedings of 10th rapeseed congress, Canberra, pp 26–29Google Scholar
  69. Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet 107:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  70. Marwede V, Gul MK, Becker HC, Ecke W (2005) Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breed 124:20–26CrossRefGoogle Scholar
  71. Matthaus B, Özcan MM, Al Juhaimi F (2016) Fatty acid composition and tocopherol content of the kernel oil from apricot varieties (Hasanbey, Hacihaliloglu, Kabaasi and Soganci) collected at different harvest times. Eur Food Res Technol 242:221–226CrossRefGoogle Scholar
  72. Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC (2004) Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol 136:2665–2675CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mikkilineni V, Rocheford T (2003) Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet 106:1326–1332CrossRefPubMedPubMedCentralGoogle Scholar
  74. Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mithen R (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. In: Breeding for disease resistance. Springer, Dordrecht, pp 71–83CrossRefGoogle Scholar
  76. Mithen R (2001) Glucosinolates–biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103CrossRefGoogle Scholar
  77. Mortuza MG, Dutta PC, Das ML (2006) Erucic acid content in some rapeseed/mustard cultivars developed in Bangladesh. J Sci Food Agric 86:135–139CrossRefGoogle Scholar
  78. Müller R, De Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J ChemEcol 36:905–913Google Scholar
  79. Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531CrossRefPubMedPubMedCentralGoogle Scholar
  80. Nour-Eldin HH, Madsen SR, Engelen S, Jørgensen ME, Olsen CE, Andersen JS, Seynnaeve D, Verhoye T, Fulawka R, Denolf P, Halkier BA (2017) Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat Biotechnol 35:377CrossRefGoogle Scholar
  81. O’Byrne DJ, Knauft DA, Shireman RB (1997) Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 32:687–695CrossRefGoogle Scholar
  82. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970PubMedPubMedCentralGoogle Scholar
  83. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158PubMedPubMedCentralGoogle Scholar
  84. Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  85. Olivieri AM, Parrini P (1986) Relationship between glucosinolate content and yield components in rapeseed. Cruciferae Newslett 11:126–127Google Scholar
  86. Pandey S, Kabdal M, Tripathi MK (2013) Study of inheritance of erucic acid in Indian mustard (Brassica juncea L. Czern & Coss). Octa. J Biosci 1:77–84Google Scholar
  87. Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133CrossRefPubMedPubMedCentralGoogle Scholar
  88. Paul NK, Johnston TD, Eagles CF (1986) Inheritance of S-methyl-L-cysteine sulphoxide and thiocyanate contents in forage rape (Brassica napus L.). Theor Appl Genet 72:706–709CrossRefPubMedPubMedCentralGoogle Scholar
  89. Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29:317–325CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochem Biophys Acta 1522:122–129PubMedPubMedCentralGoogle Scholar
  91. Pushpa HD, Yadava DK, Singh N, Vasudev S, Saini N, Muthusamy V, Prabhu KV (2016) Validation of molecular markers linked to low glucosinolate QTLs for marker assisted selection in Indian mustard (Brassica juncea L. Czern & Coss). Indian J Genet 76:64–68Google Scholar
  92. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  94. Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113CrossRefPubMedPubMedCentralGoogle Scholar
  95. Renard S, Mcgregor S (1992) Antithrombogenic effect of erucic acid poor rapeseed oil in the rats. Rev Fr Crop Cros 23:393–396Google Scholar
  96. Rodman JE, Karol KG, Price RA, Sytsma KJ (1996) Molecules, morphology, and Dahlgren’s expanded order Capparales. Syst Bot 21:289–307CrossRefGoogle Scholar
  97. Rolletschek H, Borisjuk L, Sánchez-García A, Gotor C, Romero LC, Martínez-Rivas JM, Mancha M (2007) Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bot 58:3171–3181CrossRefPubMedPubMedCentralGoogle Scholar
  98. Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutations in the fatty acid elongation 1 gene are associated with a loss of β-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492:107–111CrossRefPubMedPubMedCentralGoogle Scholar
  99. Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2015) Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi‑parental mapping populations. Theor Appl Genet 128:657–666Google Scholar
  100. Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2018) QTL landscape for oil content in I: analysis in multiple bi-parental populations in high and ‘0’erucic background. Front Plant Sci 9:1448CrossRefPubMedPubMedCentralGoogle Scholar
  101. Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S, Yadava DK (2016) Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breed Sci 66:831–837CrossRefPubMedPubMedCentralGoogle Scholar
  102. Saini N, Yashpal, Koramutla MK, Singh N, Singh S, Singh R, Yadav S, Bhattacharya R, Vasudev S, Yadava DK (2019) Promoter polymorphism in FAE1. 1 and FAE1. 2 genes associated with erucic acid content in Brassica juncea. Mol Breed 39:75Google Scholar
  103. Scheffler JA, Sharpe AG, Schmidt H, Sperling P, Parkin IA, Lühs W, Lydiate DJ, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591CrossRefGoogle Scholar
  104. Schierholt A, Becker HC, Ecke W (2000) Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet 101:897–901CrossRefGoogle Scholar
  105. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641CrossRefPubMedPubMedCentralGoogle Scholar
  106. Singh J, Yadava DK, Vasudev S, Singh N, Muthusamy V, Prabhu KV (2015) Inheritance of low erucic acid in Indian mustard [Brassica juncea (L.) Czern. And Coss.]. Indian J GenPlant Breed 75:264–266CrossRefGoogle Scholar
  107. Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2004) Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed 13:365–375CrossRefGoogle Scholar
  108. Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, Pental D, Pradhan AK (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511CrossRefGoogle Scholar
  109. Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 456–527Google Scholar
  110. Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic GSLs. PLoS One 2:e1322CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  112. Stefansson BR, Hougen FW (1964) Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can J Plant Sci 44:359–364CrossRefGoogle Scholar
  113. Stefansson BR, Hougen FW, Downey RK (1961) Note on the isolation of rape plants with seed oil free from erucic acid. Can J Plant Sci 41:218–219CrossRefGoogle Scholar
  114. Tanhuanpää P, Vilkki J, Vilkki H (1996) Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet 92:952–956CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tanhuanpää P, Vilkki J, Vihinen M (1998) Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed 4:543–550CrossRefGoogle Scholar
  116. Thormann CE, Romero J, Mant J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286CrossRefPubMedPubMedCentralGoogle Scholar
  117. Tian B, Wei F, Shu H, Zhang Q, Zang X, Lian Y (2011) Decreasing erucic acid level by RNAi-mediated silencing of fatty acid elongase 1 (BnFAE1. 1) in rapeseeds (Brassica napus L.). AfricN. J Biotechnol 10:13194–13201Google Scholar
  118. Vageeshbabu HS, Chopra VL (1997) Genetic and biotechnological approaches for reducing glucosinolates from rapeseed-mustard meal. J Plant Biochem Biotechnol 6:53–62CrossRefGoogle Scholar
  119. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ (2006) The Arabidopsis vitamin E pathway gene 5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224CrossRefPubMedPubMedCentralGoogle Scholar
  120. Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G (1997) A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 103:79–129CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wang F, Perry SE (2013) Identification of direct targets of FUSCA3 a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264CrossRefPubMedPubMedCentralGoogle Scholar
  122. Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765CrossRefGoogle Scholar
  123. Wang N, Shi L, Tian F, Ning H, Wu X, Long Y, Meng J (2010) Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biol 10:137CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P, Gibbard C, Clarke M, Jennaway R, Bancroft I (2014) The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol Breed 33:349–362CrossRefPubMedPubMedCentralGoogle Scholar
  125. Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270CrossRefPubMedPubMedCentralGoogle Scholar
  126. Wu Y, Xiao L, Wu G, Lu C (2007) Cloning of fatty acid elongase 1 gene and molecular identification of A and C genome in Brassica species. Sci China C Life Sci 50:343–349CrossRefPubMedPubMedCentralGoogle Scholar
  127. Wu G, Wu Y, Xiao L, Li X, Lu C (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499CrossRefPubMedPubMedCentralGoogle Scholar
  128. Xu A, Huang Z, Ma C, Xiao E, Zhang X, Tu J, Fu T (2010) FAE1 sequence characteristics and its relationship with erucic acid content in Brassica juncea. Acta Agron Sin 36:794–800CrossRefGoogle Scholar
  129. Xu J, Nwafor CC, Shah N, Zhou Y, Zhang C (2019) Identification of genetic variation in Brassica napus seeds for tocopherol content and composition using near-infrared spectroscopy technique. Plant Breed 16:1Google Scholar
  130. Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H (2005) High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Sci Technol Res 11:231–235CrossRefGoogle Scholar
  131. Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352CrossRefPubMedPubMedCentralGoogle Scholar
  132. Yan G, Li D, Cai M, Gao G, Chen B, Xu K, Li J, Li F, Wang N, Qiao J, Li H (2015) Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L. Breed Sci 65:257–264CrossRefPubMedPubMedCentralGoogle Scholar
  133. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125:715–729CrossRefPubMedPubMedCentralGoogle Scholar
  134. Yashpal, Vasudev S, Singh N, Yadava DK (2018) Oil-quality enhancement of rapeseed mustard: significance, achievements and future challenges. Indian Farming 68:9–12Google Scholar
  135. Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Michael MT, Govindjee R (2010) Overexpression of c-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochem Biophys Acta 1797:1428–1438PubMedPubMedCentralGoogle Scholar
  136. Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH, Mun JH (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276:3559–3574CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zeng F, Cheng B (2014) Transposable element insertion and epigenetic modification cause the multiallelic variation in the expression of FAE1 in Sinapis alba. Plant Cell 26:2648–2659CrossRefPubMedPubMedCentralGoogle Scholar
  138. Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y (2019) A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnol J 17:2313–2324CrossRefPubMedPubMedCentralGoogle Scholar
  139. Zukalová H, Vasak J (2002) The role and effects of glucosinolates of Brassica species-a review. Rostlinna Vyroba 48:175–180Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yashpal
    • 1
  • Navinder Saini
    • 1
  • Naveen Singh
    • 1
  • Rajat Chaudhary
    • 1
  • Sangita Yadav
    • 1
  • Rajendra Singh
    • 1
  • Sujata Vasudev
    • 1
  • D. K. Yadava
    • 1
  1. 1.ICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations