Advertisement

Ancient and Recent Polyploid Evolution in Brassica

  • Sarah V. SchiesslEmail author
  • Annaliese S. Mason
Chapter
  • 44 Downloads

Abstract

The Brassica genus contains phenotypically diverse species and many important vegetable, oilseed and condiment crop types. Much of this phenotypic diversity and breeding utility may be traced back to the highly complex genome structures of this group. Several Brassica species are recent allopolyploids, including the most agronomically important crop species (canola, rapeseed), which is thought to have formed through human agricultural practices in the last few hundred to few thousand years. Prior to this event, though, the entire Brassica genus had undergone several rounds of polyploidization and hybridization, followed by genome-downsizing and loss of redundant gene copies. These processes might have played a role in diversification and speciation in this genus, as extra genomic content provides an adaptive substrate by which novel genetic diversity and functionality can arise. Understanding the history of ancient and recent polyploidy in Brassica is important for modern-day breeding approaches, particularly in identifying the genetic underpinnings of complex phenotypic traits.

Keywords

Brassica Evolution Polyploidization Origin Speciation 

Notes

Acknowledgments

ASM and SVS are funded by Emmy Noether DFG grant MA6473/1-1.

References

  1. Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JSP (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194.  https://doi.org/10.1093/aob/mcx079CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54.  https://doi.org/10.1186/1471-2229-10-54CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120.  https://doi.org/10.1007/s00606-006-0415-zCrossRefGoogle Scholar
  4. Arias T, Beilstein MA, Tang M, McKain MR, Pires JC (2014) Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation after 20 million years of divergence. Am J Bot 101:86–91.  https://doi.org/10.3732/ajb.1300312CrossRefPubMedGoogle Scholar
  5. Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15:140–146.  https://doi.org/10.1016/j.pbi.2012.03.010CrossRefPubMedGoogle Scholar
  6. Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688.  https://doi.org/10.1139/g00-026CrossRefPubMedGoogle Scholar
  7. Bansal P, Banga S, Banga SS (2012) Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One 7:e29607.  https://doi.org/10.1371/journal.pone.0029607CrossRefPubMedPubMedCentralGoogle Scholar
  8. Becker A (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogen Evol 29:464–489.  https://doi.org/10.1016/S1055-7903(03)00207-0CrossRefGoogle Scholar
  9. Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67CrossRefGoogle Scholar
  10. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. PNAS 107:18724–18728.  https://doi.org/10.1073/pnas.0909766107CrossRefPubMedGoogle Scholar
  11. Bird KA, An H, Gazave E, Gore MA, Pires JC, Robertson LD, Labate JA (2017) Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L. Front Plant Sci 8:321.  https://doi.org/10.3389/fpls.2017.00321CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bus A, Korber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123:1413–1423.  https://doi.org/10.1007/s00122-011-1676-7CrossRefPubMedGoogle Scholar
  13. Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M-C, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953.  https://doi.org/10.1126/science.1253435CrossRefPubMedGoogle Scholar
  14. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71.  https://doi.org/10.1016/j.tplants.2009.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen S, Wan Z, Nelson MN, Chauhan JS, Redden R, Burton WA, Lin P, Salisbury PA, Fu T, Cowling WA (2013) Evidence from genome-wide simple sequence repeat markers for a polyphyletic origin and secondary centers of genetic diversity of Brassica juncea in China and India. J Hered 104:416–427.  https://doi.org/10.1093/jhered/est015CrossRefPubMedGoogle Scholar
  16. Chen FB, Liu HF, Yao QL, Fang P (2016) Evolution of mustard (Brassica juncea Coss) subspecies in China: evidence from the chalcone synthase gene. Genet Mol Res 15.  https://doi.org/10.4238/gmr.15028045
  17. Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. Plos One 7(5):e36442.  https://doi.org/10.1371/journal.pone.0036442CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling MR, Borm T, Bonnema G, Wu J, Wang X (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218–1224.  https://doi.org/10.1038/ng.3634CrossRefPubMedGoogle Scholar
  19. Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276.  https://doi.org/10.1105/tpc.109.072991CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487PubMedPubMedCentralGoogle Scholar
  21. Dapp M, Reinders J, Bédiée A, Balsera C, Bucher E, Theiler G, Granier C, Paszkowski J (2015) Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat Plants 1:15092.  https://doi.org/10.1038/nplants.2015.92CrossRefPubMedGoogle Scholar
  22. Diez CM, Roessler K, Gaut BS (2014) Epigenetics and plant genome evolution. Curr Opin Plant Biol 18:1–8.  https://doi.org/10.1016/j.pbi.2013.11.017CrossRefPubMedGoogle Scholar
  23. East EM (1936) Heterosis. Genetics 4:375–397Google Scholar
  24. FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton AD, Cochrane M (2007) Hybridization within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica 158:209–230.  https://doi.org/10.1007/s10681-007-9444-0CrossRefGoogle Scholar
  25. Fu D, Mason AS, Xiao M, Yan H (2016) Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Sci 242:37–46.  https://doi.org/10.1016/j.plantsci.2015.09.017CrossRefPubMedGoogle Scholar
  26. Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28.  https://doi.org/10.1111/j.1469-8137.2009.03089.xCrossRefPubMedGoogle Scholar
  27. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napusand their effect on gene expression and phenotype. Plant Cell 19:3403–3417.  https://doi.org/10.1105/tpc.107.054346CrossRefPubMedPubMedCentralGoogle Scholar
  28. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP, Paterson AH, Pires JC, Sharpe AG, Tang H, Teakle GR, Town CD, Batley J, Edwards D (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390.  https://doi.org/10.1038/ncomms13390CrossRefPubMedPubMedCentralGoogle Scholar
  29. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752.  https://doi.org/10.1038/nature04434CrossRefPubMedGoogle Scholar
  30. Herbst RH, Bar-Zvi D, Reikhav S, Soifer I, Breker M, Jona G, Shimoni E, Schuldiner M, Levy AA, Barkai N (2017) Heterosis as a consequence of regulatory incompatibility. BMC Biol 15:38.  https://doi.org/10.1186/s12915-017-0373-7CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238.  https://doi.org/10.1186/1471-2229-12-238CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jenczewski E, Eber F, Grimaus A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164(2):645–653PubMedPubMedCentralGoogle Scholar
  33. Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IAP (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706.  https://doi.org/10.1038/ncomms470CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaur P, Banga S, Kumar N, Gupta S, Akhatar J, Banga SS (2014) Polyphyletic origin of Brassica juncea with B. rapa and B. nigra (Brassicaceae) participating as cytoplasm donor parents in independent hybridization events. Am J Bot 101:1157–1166.  https://doi.org/10.3732/ajb.1400232CrossRefPubMedGoogle Scholar
  35. Książczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chèvre AM (2011) Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120:557–571.  https://doi.org/10.1007/s00412-011-0331-zCrossRefPubMedGoogle Scholar
  36. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedPubMedCentralGoogle Scholar
  37. Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20.  https://doi.org/10.1046/j.1365-313X.1996.09010013.xCrossRefPubMedGoogle Scholar
  38. Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, Yang G (2015) BnaC9.SMG7b functions as a positive regulator of number of seeds per silique in rapeseed (Brassica napus L.) by regulating the formation of functional female gametophytes. Plant Physiol 169:2744–2760.  https://doi.org/10.1104/pp.15.01040CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li P, Zhang S, Li F, Zhang S, Zhang H, Wang X, Sun R, Bonnema G, Borm TJA (2017) A phylogenetic analysis of chloroplast genomes elucidates the relationships of the six economically important Brassicaspecies comprising the triangle of U. Front Plant Sci 8:716.  https://doi.org/10.3389/fpls.2017.00111CrossRefGoogle Scholar
  40. Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, Visser RGF, Wang X, de Ridder D, Bonnema G (2014) Beyond genomic variation--comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics 15:250.  https://doi.org/10.1186/1471-2164-15-250CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chèvre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596.  https://doi.org/10.1534/genetics.106.064071CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930.  https://doi.org/10.1038/ncomms4930CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, Delannoy E, Rigaill G, Jenczewski E (2018) Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. New Phytol 217:367–377.  https://doi.org/10.1111/nph.14836CrossRefPubMedGoogle Scholar
  44. Lukens LN (2005) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napusallopolyploids. Plant Physiol 140:336–348.  https://doi.org/10.1104/pp.105.066308CrossRefPubMedGoogle Scholar
  45. Lukens L, Zou F, Lydiate D, Parkin IAP, Osborn TC (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372PubMedPubMedCentralGoogle Scholar
  46. Lysak MA (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525.  https://doi.org/10.1101/gr.3531105CrossRefPubMedPubMedCentralGoogle Scholar
  47. Marmagne A, Brabant P, Thiellement H, Alix K (2010) Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential protein regulation. New Phytol 186:216–227.  https://doi.org/10.1111/j.1469-8137.2009.03139.xCrossRefPubMedGoogle Scholar
  48. Mason AS, Pires JC (2015) Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet 31:5–10.  https://doi.org/10.1016/j.tig.2014.09.011CrossRefPubMedGoogle Scholar
  49. Mason AS, Takahira J, Atri C, Samans B, Hayward A, Cowling WA, Batley J, Nelson MN (2015) Microspore culture reveals complex meiotic behaviour in a trigenomic Brassica hybrid. BMC Plant Biol 15:173.  https://doi.org/10.1186/s12870-015-0555-9CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mason AS, Higgins EE, Snowdon RJ, Batley J, Stein A, Werner C, Parkin IAP (2017) A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor Appl Genet 130:621–633.  https://doi.org/10.1007/s00122-016-2849-1CrossRefPubMedGoogle Scholar
  51. Mason AS, Chauhan P, Banga S, Banga SS, Salisbury P, Barbetti MJ, Batley J (2018) Agricultural selection and presence–absence variation in spring-type canola germplasm. Crop Pasture Sci 69:55.  https://doi.org/10.1071/CP17161CrossRefGoogle Scholar
  52. McClintock B (1984) The significance of responses of the genome to challenges. Science 226:792–801CrossRefGoogle Scholar
  53. Miller M, Zhang C, Chen ZJ (2012) Ploidy and hybridity effects on growth, vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 (Bethesda) 2:505–513.  https://doi.org/10.1534/g3.112.002162CrossRefGoogle Scholar
  54. Morinaga T (1934) Interspecific hybridization in Brassica. Cytologia 6:62–67CrossRefGoogle Scholar
  55. Nagaru U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452Google Scholar
  56. Nicolas SD, Monod H, Eber F, Chevre AM, Jenczewski E (2012) Non-random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization. Plant J 70:691–703.  https://doi.org/10.1111/j.1365-313X.2012.04914.xCrossRefPubMedGoogle Scholar
  57. Osborn TC, Chris Pires J, Birchler JA, Auger DL, Jeffery Chen Z, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147.  https://doi.org/10.1016/S0168-9525(03)00015-5CrossRefPubMedGoogle Scholar
  58. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462.  https://doi.org/10.1016/j.cell.2007.10.022CrossRefPubMedGoogle Scholar
  59. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189.  https://doi.org/10.1007/BF00308062CrossRefPubMedGoogle Scholar
  60. Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Chris Pires J, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang X, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77CrossRefGoogle Scholar
  61. Paule J, Wagner ND, Weising K, Zizka G (2017) Ecological range shift in the polyploid members of the South American genus Fosterella (Bromeliaceae). Ann Bot 120:233–243.  https://doi.org/10.1093/aob/mcw245CrossRefPubMedPubMedCentralGoogle Scholar
  62. Paule J, Dunkel FG, Schmidt M, Gregor T (2018) Climatic differentiation in polyploid apomictic Ranunculus auricomus complex in Europe. BMC Ecol 18:1–12.  https://doi.org/10.1186/s12898-018-0172-1CrossRefGoogle Scholar
  63. Pelé A, Rousseau-Gueutin M, Chèvre A-M (2018) Speciation success of polyploid plants closely relates to the regulation of meiotic recombination. Front Plant Sci 9:907.  https://doi.org/10.3389/fpls.2018.00907CrossRefPubMedPubMedCentralGoogle Scholar
  64. Qi X, An H, Ragsdale AP, Hall TE, Gutenkunst RN, Chris Pires J, Barker MS (2017) Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol Ecol 26:3373–3388.  https://doi.org/10.1111/mec.14131CrossRefPubMedGoogle Scholar
  65. Qian L, Voss-Fels K, Cui Y, Jan HU, Samans B, Obermeier C, Qian W, Snowdon RJ (2016) Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol Plant 9:1559–1569.  https://doi.org/10.1016/j.molp.2016.10.017CrossRefPubMedGoogle Scholar
  66. Rakow G (2004) Species origin and economic importance of Brassica. In: Biotechnology in agriculture and forestry, vol 54. Springer, BerlinGoogle Scholar
  67. Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501.  https://doi.org/10.1146/annurev.ecolsys.29.1.467CrossRefGoogle Scholar
  68. Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1711–1725.  https://doi.org/10.3732/ajb.1400119CrossRefPubMedGoogle Scholar
  69. Renny-Byfield S, Gong L, Gallagher JP, Wendel JF (2015) Persistence of subgenomes in paleopolyploid cotton after 60 mya of evolution. Mol Biol Evol 32:1063–1071.  https://doi.org/10.1093/molbev/msv001CrossRefPubMedGoogle Scholar
  70. Samans B, Chalhoub B, Snowdon RJ (2017) Surviving a genome collision: genomic signatures of allopolyploidization in the recent crop species Brassica napus. Plant Genome 10(3).  https://doi.org/10.3835/plantgenome2017.02.0013
  71. Sarilar V, Palacios PM, Rousselet A, Ridel C, Falque M, Eber F, Chèvre A-M, Joets J, Brabant P, Alix K (2013) Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. New Phytol 198:593–604.  https://doi.org/10.1111/nph.12156CrossRefPubMedGoogle Scholar
  72. Schiessl SV, Hüttel B, Kuehn D, Reinhardt R, Snowdon RJ (2017a) Post-polyploidisationmorphotype diversification associates with gene copy number variation. Sci Rep 7:41845.  https://doi.org/10.1038/srep41845
  73. Schiessl SV, Huettel B, Kuehn D, Reinhardt R, Snowdon RJ (2017b) Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation. Sci Data 4:170013.  https://doi.org/10.1038/sdata.2017.13CrossRefPubMedPubMedCentralGoogle Scholar
  74. Schiessl SV, Katche E, Ihien E, Chawla HS, Mason AS (2018) The role of genomic structural variation in the genetic improvement of polyploid crops. Crop J.  https://doi.org/10.1016/j.cj.2018.07.006
  75. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88.  https://doi.org/10.1146/annurev-arplant-042110-103827CrossRefPubMedGoogle Scholar
  76. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. PNAS 108:4069–4074.  https://doi.org/10.1073/pnas.1101368108CrossRefPubMedGoogle Scholar
  77. Seyis F, Snowdon RJ, Luhs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed 122:473–478.  https://doi.org/10.1111/j.1439-0523.2003.00859.xCrossRefGoogle Scholar
  78. Seyis F, Friedt W, Lühs W (2006) Yield of Brassica napus L. hybrids developed using resynthesized rapeseed material sown at different locations. Field Crop Res 96:176–180.  https://doi.org/10.1016/j.fcr.2005.06.005CrossRefGoogle Scholar
  79. Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N (2018) Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ 41:1935–1947.  https://doi.org/10.1111/pce.13353CrossRefPubMedGoogle Scholar
  80. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588.  https://doi.org/10.1146/annurev.arplant.043008.092039CrossRefPubMedGoogle Scholar
  81. Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165.  https://doi.org/10.1016/j.pbi.2016.03.015CrossRefPubMedGoogle Scholar
  82. Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109.  https://doi.org/10.1016/j.pbi.2015.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  83. Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, Barad O, Barbazuk WB, Bass HW, Baruch K, Ben-Zvi G, Buckler ES, Bukowski R, Campbell MS, Cannon EKS, Chomet P, Dawe RK, Davenport R, Dooner HK, Du LH, Du C, Easterling KA, Gault C, Guan J-C, Hunter CT, Jander G, Jiao Y, Koch KE, Kol G, Köllner TG, Kudo T, Li Q, Lu F, Mayfield-Jones D, Mei W, McCarty DR, Noshay JM, Portwood JL, Ronen G, Settles AM, Shem-Tov D, Shi J, Soifer I, Stein JC, Stitzer MC, Suzuki M, Vera DL, Vollbrecht E, Vrebalov JT, Ware D, Wei S, Wimalanathan K, Woodhouse MR, Xiong W, Brutnell TP (2018) The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet 50:1282–1288.  https://doi.org/10.1038/s41588-018-0158-0CrossRefPubMedGoogle Scholar
  84. Stein A, Coriton O, Rousseau-Gueutin M, Samans B, Schiessl SV, Obermeier C, Parkin IAP, Chèvre A-M, Snowdon RJ (2017) Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12732
  85. Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112.  https://doi.org/10.1111/j.1469-8137.2010.03182.xCrossRefPubMedGoogle Scholar
  86. Szadkowski E, Eber F, Huteau V, Lode M, Coriton O, Jenczewski E, Chevre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol 191:884–894.  https://doi.org/10.1111/j.1469-8137.2011.03729.xCrossRefPubMedGoogle Scholar
  87. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979.  https://doi.org/10.1534/genetics.104.033209CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039.  https://doi.org/10.1038/ng.919CrossRefPubMedGoogle Scholar
  89. Wendel JF, Lisch D, Hu G, Mason AS (2018) The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev 49:1–7.  https://doi.org/10.1016/j.gde.2018.01.004CrossRefPubMedGoogle Scholar
  90. Werner C, Snowdon R (2018) Genome-facilitated breeding of oilseed rape. In: Liu S, Snowdon R, Chalhoub B (eds) The Brassica napus Genome. Springer, Cham, pp 245–269CrossRefGoogle Scholar
  91. Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8:e1000409.  https://doi.org/10.1371/journal.pbio.1000409CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi IH, Jilani G, Wu L, Zheng H, Zhang G, Chalhoub B, Shen L, Yu H, Jiang L (2019) Whole-genome resequencing of a world-wide collection of rapeseed accessions reveals genetic basis of their ecotype divergence. Mol Plant 12:30–43.  https://doi.org/10.1016/j.molp.2018.11.007CrossRefPubMedGoogle Scholar
  93. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. PNAS 108:7908–7913.  https://doi.org/10.1073/pnas.1014138108CrossRefPubMedGoogle Scholar
  94. Yao H, Dogra Gray A, Auger DL, Birchler JA (2013) Genomic dosage effects on heterosis in triploid maize. PNAS 110:2665–2669.  https://doi.org/10.1073/pnas.1221966110CrossRefPubMedGoogle Scholar
  95. Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J (2013) Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J 76:211–222.  https://doi.org/10.1111/tpj.12291CrossRefPubMedGoogle Scholar
  96. Zhou R, Moshgabadi N, Adams KL (2011) Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids. PNAS 108:16122–16127.  https://doi.org/10.1073/pnas.1109551108CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Plant Breeding Department, ResearchCentre for Biosystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany

Personalised recommendations