The Neuroethology of Vocal Communication in Songbirds: Production and Perception of a Call Repertoire

  • Julie E. ElieEmail author
  • Frédéric E. Theunissen
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 71)


Oscines learn to produce a complex vocalization, the song, which they copy from a conspecific as young birds. The song is an attractive and conspicuous acoustic signal with striking spectral and temporal complexity. The oscine song copying behavior is also remarkable because vocal imitation is a relatively rare ability in vertebrates and because none of the nonavian species can outperform the best oscine mimics. Studies of the neurobiology of song learning have unraveled many of the mechanisms involved in this impressive vocal behavior. Song, however, is only one of the many vocalizations that are produced by oscines. The vocal repertoire of oscines is impressive not only because of the number of vocalizations produced but also because of the flexible production and usage of these sounds. This chapter reviews the vocal behavior of oscines in the framework of animal communication and examines the mechanisms underlying the production and perception of all vocalization types. The chapter also reviews how the auditory system and vocal and social brain networks might be connected to generate appropriate responses to communication calls and song. As a whole, this chapter argues that studies of the mechanisms underlying song learning and also the mechanisms underlying call plasticity, production, and perception are critical for understanding the neuroethology of vocal communication in oscines. Embracing the complexity of the vocal communication system of oscines will enhance our understanding of the brain areas that, until now, have mostly been studied in the context of song imitation.


Animal communication Auditory categories Auditory cortex Auditory memory Auditory objects Neural invariance Song imitation Vocal learning Vocal plasticity 



The authors thank Profs. Martin Wild, Marc Schmidt, Sarah Woolley, and Jon Sakata for their insightful comments and feedback on draft versions of this chapter.

Compliance with Ethics Requirements

Julie Elie declares that she has no conflict of interest.

Frédéric Theunissen declares that he has no conflict of interest.


  1. Akutagawa E, Konishi M (2010) New brain pathways found in the vocal control system of a songbird. J Comp Neurol 518(15):3086–3100CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alward BA, Balthazart J, Ball GF (2013) Differential effects of global versus local testosterone on singing behavior and its underlying neural substrate. Proc Natl Acad Sci US A 110(48):19573–19578CrossRefGoogle Scholar
  3. Amin N, Gill P, Theunissen FE (2010) Role of the zebra finch auditory thalamus in generating complex representations for natural sounds. J Neurophysiol 104(2):784–798CrossRefPubMedPubMedCentralGoogle Scholar
  4. Appeltants D, Ball G, Balthazart J (2002) The origin of catecholaminergic inputs to the song control nucleus RA in canaries. Neuroreport 13:649–653CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aronov D, Andalman AS, Fee MS (2008) A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320(5876):630–634CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ashmore RC, Renk JA, Schmidt MF (2008) Bottom-up activation of the vocal motor forebrain by the respiratory brainstem. J Neurosci 28(10):2613–2623CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baker MC, Bjerke TK, Lampe HU et al (1987) Sexual-response of female yellowhammers to differences in regional song dialects and repertoire sizes. Anim Behav 35:395–401CrossRefGoogle Scholar
  8. Bauer EE, Coleman MJ, Roberts TF et al (2008) A synaptic basis for auditory-vocal integration in the songbird. J Neurosci 28(6):1509–1522CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beecher MD, Brenowitz EA (2005) Functional aspects of song learning in songbirds. Trends Ecol Evol 20(3):143–149CrossRefPubMedPubMedCentralGoogle Scholar
  10. Belyk M, Brown S (2017) The origins of the vocal brain in humans. Neuroscience and Biobehav Rev 77:177–193CrossRefGoogle Scholar
  11. Benichov JI, Benezra SE, Vallentin D et al (2016) The forebrain song system mediates predictive call timing in female and male zebra finches. Curr Biol 26(3):309–318CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224(4651):901–903CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brenowitz EA, Beecher MD (2005) Song learning in birds: diversity and plasticity opportunities and challenges. Trends Neurosci 28(3):127–132CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coleman MJ, Vu ET (2005) Recovery of impaired songs following unilateral but not bilateral lesions of nucleus uvaeformis of adult zebra finches. J Neurobiol 63(1):70–89CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coleman MJ, Roy A, Wild JM et al (2007) Thalamic gating of auditory responses in telencephalic song control nuclei. J Neurosci 27(37):10024–10036CrossRefPubMedPubMedCentralGoogle Scholar
  16. D’Amelio PB, Klumb M, Adreani MN et al (2017) Individual recognition of opposite sex vocalizations in the zebra finch. Sci Rep 7:5579CrossRefPubMedPubMedCentralGoogle Scholar
  17. Daley M, Goller F (2004) Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering. J Neurobiol 59(3):319–330CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dalziell AH, Magrath RD (2012) Fooling the experts: accurate vocal mimicry in the song of the superb lyrebird Menura novaehollandiae. Anim Behav 83(6):1401–1410CrossRefGoogle Scholar
  19. Dunning JL, Maze SE, Atwood EJ et al (2018) Caudal mesopallial neurons in female songbirds bridge sensory and motor brain regions. J Comp Neurol 526(10):1703–1711CrossRefGoogle Scholar
  20. Durand SE, Tepper JM, Cheng MF (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323(4):495–518CrossRefPubMedPubMedCentralGoogle Scholar
  21. Düring DN, Elemans CPH (2016) Embodied motor control of avian vocal production In: Suthers R Fitch W Fay R Popper A (eds) Vertebrate Sound Production and Acoustic Communication Springer Handbook of Auditory Research vol 53Google Scholar
  22. Elie JE, Theunissen FE (2015) Meaning in the avian auditory cortex: neural representation of communication calls. Eur J Neurosci 41(5):546–567CrossRefPubMedPubMedCentralGoogle Scholar
  23. Elie JE, Theunissen FE (2016) The vocal repertoire of the domesticated zebra finch: a data-driven approach to decipher the information-bearing acoustic features of communication signals. Anim Cogn 19(2):285–315CrossRefPubMedPubMedCentralGoogle Scholar
  24. Elie JE, Theunissen FE (2018) Zebra finches identify individuals using vocal signatures unique to each call type. Nat Commun 9(1):4026CrossRefPubMedPubMedCentralGoogle Scholar
  25. Elie JE, Soula HA, Mathevon N et al (2011) Dynamics of communal vocalizations in a social songbird the zebra finch (Taeniopygia guttata). J Acoust Sco Am 129(6):4037–4046CrossRefGoogle Scholar
  26. Engesser S, Crane JM, Savage JL et al (2015) Experimental evidence for phonemic contrasts in a nonhuman vocal system. PLoS Biol 13(6):e1002171CrossRefPubMedPubMedCentralGoogle Scholar
  27. Engesser S, Ridley AR, Townsend SW (2016) Meaningful call combinations and compositional processing in the southern pied babbler. Proc Natl Acad Sci U S A 113(21):5976–5981CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fitch WT, Huber L, Bugnyar T (2010) Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65(6):795–814CrossRefPubMedPubMedCentralGoogle Scholar
  29. Flower TP, Gribble M, Ridley AR (2014) Deception by flexible alarm mimicry in an african bird. Science 344(6183):513–516CrossRefPubMedPubMedCentralGoogle Scholar
  30. Freeberg TM (2008) Complexity in the chick-a-Dee call of carolina chikcadees. Auk 125(4):896–907CrossRefGoogle Scholar
  31. Fukushima Y, Aoki K (2000) The role of the dorsomedial nucleus (DM) of intercollicular complex with regard to sexual difference of distance calls in Bengalese finches. Zool Sci 17(9):1231–1238CrossRefGoogle Scholar
  32. Gammon DE, Altizer CE (2011) Northern mockingbirds produce syntactical patterns of vocal mimicry that reflect taxonomy of imitated species. J Field Ornithol 82(2):158–164CrossRefGoogle Scholar
  33. Gentner TQ (2004) Neural systems for individual song recognition in adult birds. Ann N Y Acad Sci 1016:282–302CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gentner TQ, Hulse SH (1998) Perceptual mechanisms for individual vocal recognition in European starlings Sturnus vulgaris. Anim Behav 56(3):579–594CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gentner TQ, Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424(6949):669–674CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gill SA, Bierema AM, Hauber M (2013) On the meaning of alarm calls: a review of functional reference in avian alarm calling. Ethology 119(6):449–461CrossRefGoogle Scholar
  37. Gobes SM, Bolhuis JJ (2007) Birdsong memory: a neural dissociation between song recognition and production. Curr Biol 17(9):789–793CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gobes SM, Zandbergen MA, Bolhuis JJ (2010) Memory in the making: localized brain activation related to song learning in young songbirds. Proc Roy Soc B-Biol Sci 277(1698):3343–3351CrossRefGoogle Scholar
  39. Goller M, Shizuka D (2018) Evolutionary origins of vocal mimicry in songbirds. Evol Lett 2(4):417–426CrossRefPubMedPubMedCentralGoogle Scholar
  40. Goller F, Mallinckrodt MJ, Torti SD (2004) Beak gape dynamics during song in the zebra finch. J Neurobiol 59(3):289–303CrossRefPubMedPubMedCentralGoogle Scholar
  41. Goodson JL (2005) The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 48(1):11–22CrossRefPubMedPubMedCentralGoogle Scholar
  42. Goodson JL, Kelly AM, Kingsbury MA et al (2012) An aggression-specific cell type in the anterior hypothalamus of finches. Proc Natl Acad Sci 109(34):13847–13852CrossRefPubMedPubMedCentralGoogle Scholar
  43. Griesser M, Wheatcroft D, Suzuki TN (2018) From bird calls to human language: exploring the evolutionary drivers of compositional syntax. Curr Opin Behav Sci 21:6–12CrossRefGoogle Scholar
  44. Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hamaguchi K, Mooney R (2012) Recurrent interactions between the input and output of a songbird cortico-basal ganglia pathway are implicated in vocal sequence variability. J Neurosci 32:11671–11687CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hara E, Kubikova L, Hessler NA et al (2007) Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. Eur J Neurosci 25(11):3406–3416CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hessler NA, Doupe AJ (1999) Social context modulates singing-related neural activity in the songbird forebrain. Nat Neurosci 2(3):209–211CrossRefGoogle Scholar
  48. Hisey E, Kearney MG, Mooney R (2018) A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nat Neurosci 21(4):589–597CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hoffmann LA, Saravanan V, Wood AN et al (2016) Dopaminergic contributions to vocal learning. J Neurosci 36(7):2176–2189CrossRefPubMedPubMedCentralGoogle Scholar
  50. Honarmand M, Riebel K, Naguib M (2015) Nutrition and peer group composition in early adolescence: impacts on male song and female preference in zebra finches. Anim Behav 107:147–158CrossRefGoogle Scholar
  51. Hsu A, Woolley SM, Fremouw TE et al (2004) Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. J Neurosci 24(41):9201–9211CrossRefPubMedPubMedCentralGoogle Scholar
  52. Janik VM (2014) Cetacean vocal learning and communication. Curr Opin Neurobiol 28:60–65CrossRefPubMedPubMedCentralGoogle Scholar
  53. Janik VM, Slater PJB (1997) Vocal learning in mammals. Adv Stud Behav 26:59–99CrossRefGoogle Scholar
  54. Jarvis ED (2013) Evolution of brain pathways for vocal learning in birds and humans. In: Bolhuis J, Everaert M (eds) Birdsong speech and language: exploring the evolution of mind and brain. MIT Press, Boston, pp 63–107Google Scholar
  55. Jarvis ED, Yu J, Rivas MV et al (2013) Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J Comp Neurol 521(16):3614–3665CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jeanne JM, Thompson JV, Sharpee TO, et al (2011) Emergence of learned categorical representations within an auditory forebrain circuit. J Neurosci 31(7):2595–2606Google Scholar
  57. Kingsbury MA, Kelly AM, Schrock SE et al (2011) Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus. PLoS One 6(6):e20720CrossRefPubMedPubMedCentralGoogle Scholar
  58. Knörnschild M, Nagy M, Metz M et al (2010) Complex vocal imitation during ontogeny in a bat. Biol Lett 6(2):156–159Google Scholar
  59. Konishi M (2003) Coding of auditory space. Ann Rev Neurosci 26:31–55CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kroodsma DE, Konishi M (1991) A suboscine bird (eastern phoebe Sayornis phoebe) develops normal song without auditory feedback. Anim Behav 42:477–487CrossRefGoogle Scholar
  61. Krützfeldt NO, Logerot P, Kubke MF et al (2010) Connections of the auditory brainstem in a songbird Taeniopygia guttata. II projections of nucleus angularis and nucleus laminaris to the superior olive and lateral lemniscal nuclei. J Comp Neurol 518(11):2135–2148CrossRefPubMedPubMedCentralGoogle Scholar
  62. Langmore NE, Maurer G, Adcock GJ et al (2008) Socially acquired host-specific mimicry and the evolution of host races in Horsfield’s bronze-cuckoo Chalcites basalis. Evolution 62(7):1689–1699CrossRefPubMedPubMedCentralGoogle Scholar
  63. Larsen ON, Goller F (2002) Direct observation of syringeal muscle function in songbirds and a parrot. J Exp Biol 205(1):25–35PubMedPubMedCentralGoogle Scholar
  64. Lehongre K, Aubin T, Robin S et al (2008) Individual signature in canary songs: contribution of multiple levels of song structure. Ethology 114(5):425–435CrossRefGoogle Scholar
  65. Lewandowski B, Vyssotski A, Hahnloser RH et al (2013) At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing production and learning. Journal of physiology Paris 107(3):178–192CrossRefGoogle Scholar
  66. Ligout S, Dentressangle F, Mathevon N et al (2016) Not for parents only: begging calls allow nest-mate discrimination in juvenile zebra finches. Ethology 122:193–206Google Scholar
  67. Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456(7219):189–194CrossRefPubMedPubMedCentralGoogle Scholar
  68. Maddox RK, Billimoria CP, Perrone BP et al (2012) Competing sound sources reveal spatial effects in cortical processing. PLoS Biol 10(5):e1001319CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mandelblat-Cerf Y, Las L, Denissenko N et al (2014) A role for descending auditory cortical projections in songbird vocal learning. elife 3:e02152CrossRefGoogle Scholar
  70. Marler P (1956) The voice of the chaffinch and its function as a language. Ibis 98:231–261CrossRefGoogle Scholar
  71. Marler P (1982) Avian and primate communication: the problem of natural categories. Neurosci Biobehav Rev 6(1):87–94CrossRefPubMedPubMedCentralGoogle Scholar
  72. Marler P (1967) Animal communication signals. Science 157(3790):769–774CrossRefPubMedPubMedCentralGoogle Scholar
  73. Marler P (1970) A comparative approach to vocal learning: song development in white-crowned sparrows. J Comp Physiol Psychol 71(22):1–25CrossRefGoogle Scholar
  74. Marler P (1997) Three models of song learning: evidence from behavior. J Neurobiol 33(5):501–516CrossRefGoogle Scholar
  75. Marler P (2004) Bird calls: their potential for neurobiology. In: Zeigler HP, Marler P (eds) Behavioral neurobiology of birdsong. The New York Academy of Science, New York, pp 31–44Google Scholar
  76. Meliza CD, Margoliash D (2012) Emergence of selectivity and tolerance in the avian auditory cortex. J Neurosci 32(43):15158–15168CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mello C, Vates G, Okuhata S et al (1998) Descending auditory pathways in the adult male zebra finch. J Comp Neurol 395:137–160CrossRefPubMedPubMedCentralGoogle Scholar
  78. Menardy F, Touiki K, Dutrieux G et al (2012) Social experience affects neuronal responses to male calls in adult female zebra finches. Eur J Neurosci 35(8):1322–1336CrossRefGoogle Scholar
  79. Miller DB (1979a) The acoustic basis of mate recognition by female zebra finches (Taeniopygia guttata). Anim Behav 27:376–380CrossRefGoogle Scholar
  80. Miller DB (1979b) Long-term recognition of fathers song by female zebra finches. Nature 280(5721):389–391CrossRefGoogle Scholar
  81. Moore RC, Lee T, Theunissen FE (2013) Noise-invariant neurons in the avian auditory cortex: hearing the song in noise. Plos Comp Biol 9(3):e1002942CrossRefGoogle Scholar
  82. Mouterde SC, Elie JE, Mathevon N et al (2017) Single neurons in the avian auditory cortex encode individual identity and propagation distance in naturally degraded communication calls. J Neurosci 37(13):3491–3510CrossRefPubMedPubMedCentralGoogle Scholar
  83. Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in canary Serinus canarius. J Comp Neurol 165(4):457–486CrossRefGoogle Scholar
  84. Nottebohm F, Kelley D, Paton J (1982) Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol 207:344–357CrossRefPubMedPubMedCentralGoogle Scholar
  85. Perez EC, Elie JE, Boucaud IC et al (2015) Physiological resonance between mates through calls as possible evidence of empathic processes in songbirds. Horm Behav 75:130–141CrossRefPubMedPubMedCentralGoogle Scholar
  86. Phan ML, Pytte CL, Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc Natl Acad Sci 103(4):1088–1093CrossRefPubMedPubMedCentralGoogle Scholar
  87. Potvin DA, Ratnayake CP, Radford AN et al (2018) Birds learn socially to recognize heterospecific alarm calls by acoustic association. Curr Biol 28(16):2632CrossRefPubMedPubMedCentralGoogle Scholar
  88. Riede T, Goller F (2010) Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing. Brain Lang 115(1):69–80CrossRefPubMedPubMedCentralGoogle Scholar
  89. Riede T, Schilling N, Goller F (2013) The acoustic effect of vocal tract adjustments in zebra finches. J Comp Physiol A 199(1):57–69CrossRefGoogle Scholar
  90. Riters LV, Alger SJ (2004) Neuroanatomical evidence for indirect connections between the medial preoptic nucleus and the song control system: possible neural substrates for sexually motivated song. Cell Tissue Res 316(1):35–44CrossRefPubMedPubMedCentralGoogle Scholar
  91. Roberts TF, Hisey E, Tanaka M et al (2017) Identification of a motor-to-auditory pathway important for vocal learning. Nat Neurosci 20(7):978–986CrossRefPubMedPubMedCentralGoogle Scholar
  92. Schmidt MF, Wild JM (2014) The respiratory-vocal system of songbirds. anatomy physiology and neural control Prog Brain Res 212:297–335PubMedPubMedCentralGoogle Scholar
  93. Schneider DM, Woolley SM (2013) Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron 79(1):141–152CrossRefPubMedPubMedCentralGoogle Scholar
  94. Searcy WA, Beecher MD (2009) Song as an aggressive signal in songbirds. Anim Behav 78(6):1281–1292CrossRefGoogle Scholar
  95. Seyfarth RM, Cheney DL (2010) Production usage and comprehension in animal vocalizations. Brain Lang 115(1):92–100CrossRefGoogle Scholar
  96. Sewards TV, Sewards MA (2003) Representations of motivational drives in mesial cortex medial thalamus hypothalamus and midbrain. Brain Res Bull 61(1):25–49CrossRefPubMedPubMedCentralGoogle Scholar
  97. Shaevitz SS, Theunissen FE (2007) Functional connectivity between auditory areas field L and CLM and song system nucleus HVC in anesthetized zebra finches. J Neurophysiol 98(5):2747–2764CrossRefPubMedPubMedCentralGoogle Scholar
  98. Simpson HB, Vicario DS (1990) Brain pathways for learned and unlearned vocalizations differ in zebra finches. J Neurosci 10(5):1541–1556CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sitt JD, Amador A, Goller F et al (2008) Dynamical origin of spectrally rich vocalizations in birdsong. Physic Rev E 78(1):e011905Google Scholar
  100. Slabbekoorn H, Smith TB (2002) Bird song ecology and speciation. Phylos T Roy Soc B 357(1420):493–503CrossRefGoogle Scholar
  101. Slater PJ, Jones AE (1995) The timing of song and distance call learning in zebra finches. Anim Behav 49(2):548–550CrossRefGoogle Scholar
  102. Sober JS, Wohlgemuth MJ, Brainard MS (2008) Central contributions to acoustic variation in birdsong. J Neurosci 28(41):10370–10379CrossRefPubMedPubMedCentralGoogle Scholar
  103. Stoeger AS, Manger P (2014) Vocal learning in elephants: neural bases and adaptive context. Curr Opin Neurobiol 28:101–107CrossRefPubMedPubMedCentralGoogle Scholar
  104. Suthers RA, Goller F, Hartley RS (1994) Motor dynamics of song production by mimic thrushes. J Neurobiol 25(8):917–936CrossRefPubMedPubMedCentralGoogle Scholar
  105. Suzuki TN (2018) Alarm calls evoke a visual search image of a predator in birds. Proc Natl Acad Sci 115(7):1541–1545CrossRefPubMedPubMedCentralGoogle Scholar
  106. Suzuki TN, Wheatcroft D, Griesser M (2018) Call combinations in birds and the evolution of compositional syntax. PLoS Biol 16(8):e2006532CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tanaka M, Sun FM, Li YL et al (2018) A mesocortical dopamine circuit enables the cultural transmission of vocal behavior. Nature 563(7729):117–119CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ter Maat A, Trost L, Sagunsky H et al (2014) Zebra finch mates use their forebrain song system in unlearned call communication. PLoS One 9(10):e109334CrossRefPubMedPubMedCentralGoogle Scholar
  109. Vates GE, Broome BM, Mello CV et al (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata). J Comp Neurol 366:613–642CrossRefPubMedPubMedCentralGoogle Scholar
  110. Vicario DS, Simpson HB (1995) Electrical stimulation in forebrain nuclei elicits learned vocal patterns in songbirds. J Neurophysiol 73(6):2602–2607CrossRefPubMedPubMedCentralGoogle Scholar
  111. Vicario DS, Naqvi NH, Raksin JN (2001) Behavioral discrimination of sexually dimorphic calls by male zebra finches requires an intact vocal motor pathway. J Neurobiol 47(2):109–120CrossRefPubMedPubMedCentralGoogle Scholar
  112. Vignal C, Mathevon N, Mottin S (2004) Audience drives male songbird response to partner’s voice. Nature 430(6998):448–451CrossRefPubMedPubMedCentralGoogle Scholar
  113. Villain AS, Boucaud IC, Bouchut C et al (2015) Parental influence on begging call structure in zebra finches (Taeniopygia guttata): evidence of early vocal plasticity. Roy Soc Open Sci 2(11):e150497CrossRefGoogle Scholar
  114. Vu ET, Mazurek ME, Kuo YC (1994) Identification of a forebrain motor programming network for the learned song of zebra finches. J Neurosci 14(11):6924–6934CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wang L, Narayan R, Grana G et al (2007) Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci 27(3):582–589CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci 107(28):12676–12681CrossRefPubMedPubMedCentralGoogle Scholar
  117. Wild JM (1994a) The auditory-vocal-respiratory axis in birds. Brain Behav Evol 44(4):192–209CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wild JM (1994b) Visual and somatosensory inputs to the avian song system via nucleus uvaeformis (Uva) and a comparison with the projections of a similar thalamic nucleus in a nonsongbird Columba livia. J Comp Neurol 349(4):512–535CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wild JM (2017) The ventromedial hypothalamic nucleus in the zebra finch (Taeniopygia guttata): afferent and efferent projections in relation to the control of reproductive behavior. J Comp Neurol 525(12):2657–2676CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wild JM, Botelho JF (2015) Involvement of the avian song system in reproductive behavior. Biol Lett 11(12):e20150773CrossRefGoogle Scholar
  121. Wild JM, Krützfeldt NE (2010) Neocortical-like organization of avian auditory ‘cortex’. Brain Behav Evol 76(2):89–92CrossRefGoogle Scholar
  122. Wild JM, Krützfeldt NE (2012) Trigeminal and telencephalic projections to jaw and other upper vocal tract premotor neurons in songbirds: sensorimotor circuitry for beak movements during singing. J Comp Neurol 520(3):590–605CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wild JM, Li DF, Eagleton C (1997) Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J Comp Neurol 377(3):392–413CrossRefPubMedPubMedCentralGoogle Scholar
  124. Woolley SC, Doupe AJ (2008) Social context - induced song variation affects female behavior and gene expression. PLoS Biol 6(3):525–537CrossRefGoogle Scholar
  125. Woolley SM, Portfors CV (2013) Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hear Res 305:45–56CrossRefPubMedPubMedCentralGoogle Scholar
  126. Woolley SM, Gill PR, Fremouw T et al (2009) Functional groups in the avian auditory system. J Neurosci 29(9):2780–2793CrossRefPubMedPubMedCentralGoogle Scholar
  127. Woolley SC, Rajan R, Joshua M et al (2014) Emergence of context-dependent variability across a basal ganglia network. Neuron 82(1):208–223CrossRefPubMedPubMedCentralGoogle Scholar
  128. Xiao L, Chattree G, Oscos FG et al (2018) A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98(1):208–221CrossRefPubMedPubMedCentralGoogle Scholar
  129. Yanagihara S, Yazaki-Sugiyama Y (2016) Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning. Nat Commun 7:e11946CrossRefGoogle Scholar
  130. Zann R (1985) Ontogeny of the zebra finch distance call. 1 effects of cross-fostering to Bengalese finches. Zeitschrift Fur Tierpsychologie (Journal of Comparative Ethology) 68(1):1–23Google Scholar
  131. Zann R (1990) Song and call learning in wild zebra finches in south-East Australia. Anim Behav 40:811–828CrossRefGoogle Scholar
  132. Zann R (1996) The Zebra finch: a synthesis of field and laboratory studies. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Departments of Psychology, Integrative Biology, and Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA

Personalised recommendations