Advertisement

Parameter Estimation for Multivariate Nonlinear Stochastic Differential Equation Models: A Comparison Study

  • Wei Gu
  • Hulin WuEmail author
  • Hongqi Xue
Chapter
  • 48 Downloads

Abstract

Statistical methods have been proposed to estimate parameters in multivariate stochastic differential equations (SDEs) from discrete observations. In this paper, we propose a method to improve the performance of the local linearization method proposed by Shoji and Ozaki (Biometrika 85:240–243, 1998), i.e., to avoid the ill-conditioned problem in the computational algorithm. Simulation studies are performed to compare the new method to three other methods, the benchmark Euler method and methods due to Pedersen (1995) and to Hurn et al. (2003). Our results show that the new method performs the best when the sample size is large and the methods proposed by Pedersen and Hurn et al. perform better when the sample size is small. These results provide useful guidance for practitioners.

Keywords

Diffusion process Euler–Maruyama scheme Simulated maximum likelihood methods Kernel density estimator Local linearization method 

Notes

Acknowledgements

This research was supported by the NIAID/NIH grants HHSN272201000055C and AI087135, and by two University of Rochester CTSI (UL1RR024160) pilot awards from the National Center for Research Resources of NIH.

References

  1. 1.
    Aït-Sahalia, Y. (2007). Estimating continuous-time models with discretely sampled data. In R. Blundell, P. Torsten, & W. K. Newey (Eds.), Advances in Economics and Econometrics, Theory and Applications, Ninth World Congress. Econometric society monographs. New York: Cambridge University Press.Google Scholar
  2. 2.
    Aït-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics, 36, 906–937.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arkin, A., Ross, J., & McAdams, H. H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149, 633–648.Google Scholar
  4. 4.
    Black, F., & Scholes, M. S. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brandt, M., & Santa-Clara, P. (2002). Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. Journal of Financial Economics, 63, 161–210.CrossRefGoogle Scholar
  6. 6.
    Carbonell, F., Jimenez, J. C., & Pedroso, L. M. (2008). Computing multiple integrals involving matrix exponentials. Journal of Computational and Applied Mathematics, 213, 300–305.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53, 385–407.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dalal, N., Greenhalgh, D., & Mao, X. (2008). A stochastic model for internal HIV dynamics. Journal of Mathematical Analysis and Applications, 341, 1084–1101.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Durham, G., & Gallant, A. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. Journal of Business & Economic Statistics, 20, 297–316.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman and Hall.zbMATHGoogle Scholar
  11. 11.
    Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications, 188, 404–425.CrossRefGoogle Scholar
  12. 12.
    Hurn, A. S., & Jeisman, J. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations. Journal of Financial Economics, 5, 390–455.CrossRefGoogle Scholar
  13. 13.
    Hurn, A. S., Lindsay, K. A., & Martin, V. I. (2003). On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations. Journal of Time Series Analysis, 24, 43–63.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jimenez, J. C., Biscay, R. J., & Ozaki, T. (2006). Inference methods for discretely observed continuous-time stochastic volatility models: A commented overview. Asia-Pacific Financial Markets, 12, 109–141.CrossRefGoogle Scholar
  15. 15.
    Jimenez, J. C., Shoji, I., & Ozaki, T. (1999). Simulation of stochastic differential equations through the local linearization method. A comparative study. Journal of Statistical Physics, 94, 587–602.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kloeden, P., & Platen, E. (1992). Numerical solution of stochastic differential equations. Berlin: Springer.CrossRefGoogle Scholar
  17. 17.
    Moler, C. B., & Van Loan, C. F. (2003). Nineteen dubious methods for computing the matrix exponential, twenty-five years later. SIAM Review, 45, 3–49.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nielsen, J. N., Madsen, H., & Young, P. C. (2000). Parameter estimation in stochastic differential equations: An overview. Annual Reviews in Control, 24, 83–94.CrossRefGoogle Scholar
  19. 19.
    Nowak, M. A., & May, R. M. (2000). Virus dynamics: Mathematical principles of immunology and virology. Oxford: Oxford University Press.zbMATHGoogle Scholar
  20. 20.
    Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scandinavian Journal of Statistics, 22, 55–71.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review, 41, 3–44.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Poulsen, R. (1999). Approximate maximum likelihood estimation of discretely observed diffusion processes. Working Paper report No. 29, Center for Analytical Finance, Aarhus.Google Scholar
  23. 23.
    Scott, D. W. (1992). Multivariate density estimation: Theory, practice and visualisation. New York: Wiley.CrossRefGoogle Scholar
  24. 24.
    Shoji, I., & Ozaki, T. (1997). Comparative study of estimation methods for continuous time stochastic processes. Journal of Time Series Analysis, 18, 485–506.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shoji, I., & Ozaki, T. (1998). A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika, 85, 240–243.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.CrossRefGoogle Scholar
  27. 27.
    Singer, H. (2002). Parameter estimation of nonlinear stochastic differential equations: Simulated maximum likelihood versus extended Kalman filter and Itô-Taylor expansion. Journal of Computational and Graphical Statistics, 11, 972–995.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sørensen, H. (2004). Parametric inference for diffusion processes observed at discrete points in time: A survey. International Statistical Review, 72, 337–354.CrossRefGoogle Scholar
  29. 29.
    Tan, W. Y., & Wu, H. (2005). Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention. Singapore: World Scientific.CrossRefGoogle Scholar
  30. 30.
    Van Loan, C. F. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23, 395–404.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Statistics and MathematicsZhongnan University of Economics and LawWuhanPeople’s Republic of China
  2. 2.University of Texas Health Sciences CenterHoustonUSA
  3. 3.Department of Biostatistics and Computational BiologyUniversity of RochesterNew YorkUSA

Personalised recommendations