Advertisement

Arousal Measurement Reflected in the Pupil Diameter for a Decision-Making Performance in Serious Games

  • Petar JerčićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11863)

Abstract

This paper sets out to investigate the potentials of using pupil diameter measure as a contactless biofeedback method. The investigation was performed on how the interdependent and competing activation of the autonomic nervous system is reflected in the pupil diameter and how it affects the performance on decision-making task in serious games. The on-line biofeedback based on physiological measurements of arousal was integrated into the serious game set in the financial context. The pupil diameter was validated against the heart rate data measuring arousal, where the effects of such arousal were investigated. It was found that the physiological arousal was observable on both the heart and pupil data. Furthermore, the participants with lower arousal took less time to reach their decisions, and those decisions were more successful, in comparison to the participants with higher arousal. Moreover, such participants were able to get a higher total score and finish the game. This study validated the potential usage of pupil diameter as an unobtrusive measure of biofeedback, which would be beneficial for the investigation of arousal on human decision-making inside of serious games.

Keywords

Serious games Physiology Pupil diameter Heart-rate variability Arousal Decision-making 

References

  1. 1.
    Adam, M.T.P., Krämer, J., Jähnig, C., Seifert, S., Weinhardt, C.: Understanding auction fever: a framework for emotional bidding. Electron. Markets 21(3), 197–207 (2011).  https://doi.org/10.1007/s12525-011-0068-9CrossRefGoogle Scholar
  2. 2.
    Astor, P.J., Adam, M.T.P., Jerčić, P., Schaff, K., Weinhardt, C.: Integrating biosignals into information systems: a neurois tool for improving emotion regulation. J. Manag. Inf. Syst. 30(3), 247–278 (2013)CrossRefGoogle Scholar
  3. 3.
    Attard-Johnson, J., ó Ciardha, C., Bindemann, M.: Comparing methods for the analysis of pupillary response. Behav. Res. 51, 83–95 (2019).  https://doi.org/10.3758/s13428-018-1108-6CrossRefGoogle Scholar
  4. 4.
    Cohen, R.A.: Yerkes-Dodson law. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.) Encyclopedia of Clinical Neuropsychology, pp. 2737–2738. Springer, New York (2011).  https://doi.org/10.1007/978-0-387-79948-3CrossRefGoogle Scholar
  5. 5.
    Eren, O.E., Ruscheweyh, R., Schankin, C., Schöberl, F., Straube, A.: The cold pressor test in interictal migraine patients - different parasympathetic pupillary response indicates dysbalance of the cranial autonomic nervous system. BMC Neurol. 18(1), 1–9 (2018).  https://doi.org/10.1186/s12883-018-1043-2CrossRefGoogle Scholar
  6. 6.
    Fenton-O’Creevy, M., et al.: A learning design to support the emotion regulation of investors. In: OECD-SEBI International Conference on Investor Education, pp. 1–16 (2012)Google Scholar
  7. 7.
    Hamilton, P.: Open source ECG analysis software documentation. Comput. Cardiol. 29, 101–104 (2002)CrossRefGoogle Scholar
  8. 8.
    Hu, Y., Wang, D., Pang, K., Xu, G., Guo, J.: The effect of emotion and time pressure on risk decision-making. J. Risk Res. 18(5), 637–650 (2015).  https://doi.org/10.1080/13669877.2014.910688 CrossRefGoogle Scholar
  9. 9.
    Jerčić, P., Sennersten, C., Lindley, C.: Modeling cognitive load and physiological arousal through pupil diameter and heart rate. Multimedia Tools Appl., 1–15 (2018).  https://doi.org/10.1007/s11042-018-6518-z
  10. 10.
    Kaltsatou, A., Kouidi, E., Fotiou, D., Deligiannis, P.: The use of pupillometry in the assessment of cardiac autonomic function in elite different type trained athletes. Eur. J. Appl. Physiol. 111(9), 2079–2087 (2011).  https://doi.org/10.1007/s00421-011-1836-0CrossRefGoogle Scholar
  11. 11.
    Kreibig, S.D., Wilhelm, F.H., Roth, W.T., Gross, J.J.: Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology 44(5), 787–806 (2007).  https://doi.org/10.1111/j.1469-8986.2007.00550.xCrossRefGoogle Scholar
  12. 12.
    Liu, D., Li, X., Santhanam, R.: Digital games and beyond: what happens when players compete? MIS Q. 37(1), 111–124 (2013)CrossRefGoogle Scholar
  13. 13.
    Lynch, G.T., James, S.M., VanDam, M.: Pupillary response and phenotype in ASD: latency to constriction discriminates ASD from typically developing adolescents. Autism Res. 11(2), 364–375 (2018).  https://doi.org/10.1002/aur.1888CrossRefGoogle Scholar
  14. 14.
    Nacke, L., Lindley, C.: Flow and immersion in first-person shooters: measuring the player’s gameplay experience. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Future Play 2008, pp. 81–88. ACM, New York (2008). http://doi.acm.org/10.1145/1496984.1496998
  15. 15.
    Park, S., Won, M.J., Lee, D.W., Whang, M.: Non-contact measurement of heart response reflected in human eye. Int. J. Psychophysiol. 123(2018), 179–198 (2018).  https://doi.org/10.1016/j.ijpsycho.2017.07.014CrossRefGoogle Scholar
  16. 16.
    Parnandi, A., Gutierrez-Osuna, R.: Contactless measurement of heart rate variability from pupillary fluctuations. In: Proceedings - 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013, pp. 191–196. IEEE (2013).  https://doi.org/10.1109/ACII.2013.38
  17. 17.
    Parnandi, A., Gutierrez-Osuna, R.: Visual biofeedback and game adaptation in relaxation skill transfer. IEEE Trans. Affect. Comput. 3045(c), 1–15 (2017).  https://doi.org/10.1109/TAFFC.2017.2705088CrossRefGoogle Scholar
  18. 18.
    Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. psychopathol. 17(3), 715–734 (2005).  https://doi.org/10.1017/S0954579405050340CrossRefGoogle Scholar
  19. 19.
    Seo, M.G., Barrett, L.: Being emotional during decision makinggood or bad? An empirical investigation. Acad. Manag. J. 50(4), 923–940 (2007)CrossRefGoogle Scholar
  20. 20.
    Sliwinski, J., Katsikitis, M., Jones, C.M.: A review of interactive technologies as support tools for the cultivation of mindfulness. Mindfulness 8(5), 1150–1159 (2017).  https://doi.org/10.1007/s12671-017-0698-xCrossRefGoogle Scholar
  21. 21.
    Steinhauer, S.R., Siegle, G.J., Condray, R., Pless, M.: Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. Int. J. Psychophysiol. 52(1), 77–86 (2004).  https://doi.org/10.1016/j.ijpsycho.2003.12.005CrossRefGoogle Scholar
  22. 22.
    Sütterlin, S., Herbert, C., Schmitt, M., Kübler, A., Vögele, C.: Frames, decisions, and cardiac-autonomic control. Soc. Neurosci. 6(2), 169–177 (2011).  https://doi.org/10.1080/17470919.2010.495883CrossRefGoogle Scholar
  23. 23.
    Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D.A., Pugh, C.: Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiol. Meas. 35(5), 807–831 (2014).  https://doi.org/10.1088/0967-3334/35/5/807CrossRefGoogle Scholar
  24. 24.
    Yamaji, K., Hirata, Y., Usui, S.: A method for montitoring autonomic nervous activity by pupillary flash response. Syst. Comput. Jpn. 31(4), 2447–2456 (2000)CrossRefGoogle Scholar
  25. 25.
    Yannakakis, G.N., Martinez, H.P., Garbarino, M.: Psychophysiology in games. In: Karpouzis, K., Yannakakis, G.N. (eds.) Emotion in Games. SC, vol. 4, pp. 119–137. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41316-7_7CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceBlekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations