Design and Performance Analysis of Real-Time Dynamic Streaming Applications

  • Xuan Khanh DoEmail author
  • Stéphane Louise
  • Albert Cohen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11882)


Static dataflow graphs enable powerful design, implementation and analysis methods for embedded systems. Nevertheless, complex signal and media processing applications—such as cognitive radio or modern video codecs—display dynamic behavior that do not fit the classical cyclo-static restrictions. An approach to tackle this limitation combines integer parameters—to express dynamic rates—with control actors—to allow topology and mode changes as well as time-dependent scheduling and constraints, as introduced in the Transaction Parameterized Dataflow (TPDF) model of computation. In this paper we present a technique to automatically analyse the static properties of a TPDF application, including consistency, liveness, boundedness and worst-case throughput. Our implementation of these analyses is validated against a set of real-life dynamic applications, demonstrating significant buffer size and throughput improvements compared to the state of the art models, including Cyclo-Static Dataflow (CSDF) and Scenario-Aware Dataflow (SADF).


Models of computation Dataflow Performance of systems 


  1. 1.
    Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.: Synchronization and Linearity. Wiley, New York (1992)zbMATHGoogle Scholar
  2. 2.
    Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: BPDF: a statically analyzable dataflow model with integer and Boolean parameters. In: EMSOFT, pp. 3:1–3:10 (2013)Google Scholar
  3. 3.
    van de Beek, J.J., Sandell, M., Isaksson, M., Ola Borjesson, P.: Low-complex frame synchronization in OFDM systems. In: ICUPC (1995)Google Scholar
  4. 4.
    Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP systems. IEEE Trans. Signal Process. 49(10), 2408–2421 (2001) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cyclo-static data flow. In: ICASSP, vol. 5, pp. 3255–3258, May 1995Google Scholar
  6. 6.
    de Dinechin, B.D., et al.: A distributed run-time environment for the Kalray MPPA-256 integrated manycore processor. Procedia Comput. Sci. 18, 1654–1663 (2013)CrossRefGoogle Scholar
  7. 7.
    Do, X., Louise, S., Cohen, A.: Managing the latency of data-dependent tasks in embedded streaming applications. In: MCSoc (2015)Google Scholar
  8. 8.
    Do, X., Louise, S., Cohen, A.: Transaction parameterized dataflow: a model for context-dependent streaming applications. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 960–965, March 2016Google Scholar
  9. 9.
    Fradet, P., Girault, A., Poplavko, P.: SPDF: a schedulable parametric data-flow MoC. In: DATE, pp. 769–774, March 2012Google Scholar
  10. 10.
    Gaubert, S.: Performance evaluation of (max,+) automata. IEEE Trans. Autom. Control 40(12), 2014–2025 (1995)CrossRefGoogle Scholar
  11. 11.
    Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow scenarios. In: CODES+ISSS, pp. 125–134, October 2010Google Scholar
  12. 12.
    Johnson, G.: LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control. McGraw-Hill School Education Group, New York (1997)Google Scholar
  13. 13.
    Lazarescu, M.T., Lavagno, L.: Interactive trace-based analysis toolset for manual parallelization of C programs. ACM Trans. Embed. Comput. Syst. 14(1), 13:1–13:20 (2015)CrossRefGoogle Scholar
  14. 14.
    Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  15. 15.
    Lotze, J., Fahmy, S., Noguera, J., Doyle, L.: A model-based approach to cognitive radio design. IEEE J-SAC 29(2), 455–468 (2011)Google Scholar
  16. 16.
    Louise, S., Dubrulle, P., Goubier, T.: A model of computation for real-time applications on embedded manycores. In: MCSoC, September 2014Google Scholar
  17. 17.
    Phillips, D.: Image Processing in C, Part 5: Basic Edge Detection, pp. 47–56 (1994)Google Scholar
  18. 18.
    Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation Using Ptolemy II. (2014).
  19. 19.
    Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Synchronization, 2nd edn. Marcel Dekker, Inc., New York (2009)Google Scholar
  20. 20.
    Stuijk, S., Geilen, M., Basten, T.: SDF\(^{3}\): SDF for free. In: Proceedings of ACSD, pp. 276–278 (2006)Google Scholar
  21. 21.
    Thies, W., Amarasinghe, S.: An empirical characterization of stream programs and its implications for language and compiler design. In: Proceedings of PACT (2010)Google Scholar
  22. 22.
    Wipliez, M., Roquier, G., Nezan, J.F.: Software code generation for the RVC-CAL language. J. Signal Process. Syst. 63(2), 203–213 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xuan Khanh Do
    • 1
    Email author
  • Stéphane Louise
    • 1
  • Albert Cohen
    • 2
  1. 1.CEA, LISTGif-sur-Yvette CedexFrance
  2. 2.INIRA and ENSParisFrance

Personalised recommendations