Advertisement

Scalable Private Set Union from Symmetric-Key Techniques

  • Vladimir KolesnikovEmail author
  • Mike Rosulek
  • Ni Trieu
  • Xiao Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11922)

Abstract

We present a new efficient protocol for computing private set union (PSU). Here two semi-honest parties, each holding a dataset of known size (or of a known upper bound), wish to compute the union of their sets without revealing anything else to either party. Our protocol is in the OT hybrid model. Beyond OT extension, it is fully based on symmetric-key primitives. We motivate the PSU primitive by its direct application to network security and other areas.

At the technical core of our PSU construction is the reverse private membership test (RPMT) protocol. In RPMT, the sender with input \(x^*\) interacts with a receiver holding a set X. As a result, the receiver learns (only) the bit indicating whether \(x^* \in X\), while the sender learns nothing about the set X. (Previous similar protocols provide output to the opposite party, hence the term “reverse” private membership.) We believe our RPMT abstraction and constructions may be a building block in other applications as well.

We demonstrate the practicality of our proposed protocol with an implementation. For input sets of size \(2^{20}\) and using a single thread, our protocol requires 238 s to securely compute the set union, regardless of the bit length of the items. Our protocol is amenable to parallelization. Increasing the number of threads from 1 to 32, our protocol requires only 13.1 s, a factor of \(18.25{\times }\) improvement.

To the best of our knowledge, ours is the first protocol that reports on large-size experiments, makes code available, and avoids extensive use of computationally expensive public-key operations. (No PSU code is publicly available for prior work, and the only prior symmetric-key-based work reports on small experiments and focuses on the simpler 3-party, 1-corruption setting.) Our work improves reported PSU state of the art by factor up to \(7,600{\times }\) for large instances.

Notes

Acknowledgments

We thank all anonymous reviewers and Brice Minaud for insightful feedback.

Vladimir Kolesnikov was supported in part by Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. He was also supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-1902070008. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Mike Rosulek and Ni Trieu were partially supported by NSF awards #1617197, a Google faculty award, and a Visa faculty award.

Supplementary material

References

  1. 1.
    Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: constant worst-case operations with a succinct representation. In: 51st FOCS, pp. 787–796. IEEE Computer Society Press, October 2010Google Scholar
  2. 2.
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press, New York (2013)Google Scholar
  3. 3.
    Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) Size matters: size-hiding private set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_10CrossRefGoogle Scholar
  4. 4.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th ACM STOC, pp. 479–488. ACM Press, May 1996Google Scholar
  5. 5.
    Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 2012, pp. 40–41. ACM Press, New York (2012)Google Scholar
  6. 6.
    Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaires’ problem. Discrete Appl. Math. 111, 2001 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593447_13CrossRefzbMATHGoogle Scholar
  8. 8.
    Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-preserving aggregation of multi-domain network events and statistics. In: Proceedings of the 19th USENIX Conference on Security, USENIX Security 2010, p. 15. USENIX Association, Berkeley (2010)Google Scholar
  9. 9.
    Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set operations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 113–130. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_7CrossRefGoogle Scholar
  10. 10.
    Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing refreshes like a RePSI: reactive private set intersection. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 280–300. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93387-0_15CrossRefGoogle Scholar
  11. 11.
    Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1243–1255. ACM Press, New York (2017)Google Scholar
  12. 12.
    Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 164–179. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_10CrossRefGoogle Scholar
  13. 13.
    Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 464–482. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_25CrossRefGoogle Scholar
  14. 14.
    Davidson, A., Cid, C.: An efficient toolkit for computing private set operations. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017, Part II. LNCS, vol. 10343, pp. 261–278. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59870-3_15CrossRefGoogle Scholar
  15. 15.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_13CrossRefzbMATHGoogle Scholar
  16. 16.
    De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14577-3_13CrossRefGoogle Scholar
  17. 17.
    Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact discovery. In: Proceedings on Privacy Enhancing Technologies (2018)CrossRefGoogle Scholar
  18. 18.
    Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press, New York (2013)Google Scholar
  19. 19.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun. ACM 39, 77–85 (1996) CrossRefGoogle Scholar
  20. 20.
    Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear communication from general assumptions. Cryptology ePrint Archive, Report 2018/238 (2018). https://eprint.iacr.org/2018/238
  21. 21.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_17CrossRefGoogle Scholar
  22. 22.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_1CrossRefGoogle Scholar
  23. 23.
    Frikken, K.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72738-5_16CrossRefGoogle Scholar
  24. 24.
    Gaudry, P., Brent, R., Zimmermann, P., Thomé, E.: https://gforge.inria.fr/projects/gf2x/
  25. 25.
    Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. J. ACM 28(2), 289–304 (1981)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptol. 25(3), 383–433 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_8CrossRefGoogle Scholar
  28. 28.
    Hogan, K., et al.: Secure multiparty computation for cooperative cyber risk assessment. In: 2016 IEEE Cybersecurity Development (SecDev), pp. 75–76, November 2016Google Scholar
  29. 29.
    Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: NDSS 2012. The Internet Society, February 2012Google Scholar
  30. 30.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security 2011 (2011)Google Scholar
  31. 31.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989Google Scholar
  32. 32.
    Ion, M., et al.: On deploying secure computing commercially: private intersection-sum protocols and their business applications. Cryptology ePrint Archive, Report 2019/723 (2019)Google Scholar
  33. 33.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  34. 34.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_15CrossRefGoogle Scholar
  35. 35.
    Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_4CrossRefGoogle Scholar
  36. 36.
    Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM Press, New York (2016)Google Scholar
  37. 37.
    Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257–1272. ACM Press, New York (2017)Google Scholar
  38. 38.
    Lenstra, A., Voss, T.: Information security risk assessment, aggregation, and mitigation. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 391–401. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_34CrossRefzbMATHGoogle Scholar
  39. 39.
    Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40061-5_27CrossRefGoogle Scholar
  40. 40.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC 1999 (1999)Google Scholar
  41. 41.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) 12th SODA, pp. 448–457. ACM-SIAM, January 2001Google Scholar
  42. 42.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26954-8_13CrossRefGoogle Scholar
  44. 44.
    Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: Proceedings of the 24th USENIX Conference on Security Symposium, pp. 515–530. USENIX Association (2015)Google Scholar
  45. 45.
    Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17659-4_5CrossRefGoogle Scholar
  46. 46.
    Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Conference on Security Symposium, pp. 797–812. USENIX Association (2014)Google Scholar
  47. 47.
    Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. 21(2) (2018) CrossRefGoogle Scholar
  48. 48.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Aiken Computation Laboratory, Harvard U. (1981)Google Scholar
  49. 49.
    Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 203–221. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-58387-6_11CrossRefGoogle Scholar
  50. 50.
    Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer Library. https://github.com/osu-crypto/libOTe
  51. 51.
    Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_9CrossRefGoogle Scholar
  52. 52.
    Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1229–1242. ACM Press, New York (2017)Google Scholar
  53. 53.
  54. 54.
    Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_8CrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Vladimir Kolesnikov
    • 1
    Email author
  • Mike Rosulek
    • 2
  • Ni Trieu
    • 2
  • Xiao Wang
    • 3
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Oregon State UniversityCorvallisUSA
  3. 3.Northwestern UniversityEvanstonUSA

Personalised recommendations