Advertisement

Efficient UC Commitment Extension with Homomorphism for Free (and Applications)

  • Ignacio CascudoEmail author
  • Ivan Damgård
  • Bernardo David
  • Nico Döttling
  • Rafael Dowsley
  • Irene Giacomelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11922)

Abstract

Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values. In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment, while the previous best constructions require oblivious transfer. We obtain amortized linear computational complexity in the length of the input messages and rate 1. Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters. Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic. These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments. Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge.

References

  1. 1.
    Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November (2017)Google Scholar
  2. 2.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 443–458. IEEE Computer Society Press, May (2014)Google Scholar
  3. 3.
    Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_11CrossRefGoogle Scholar
  4. 4.
    Baum, C., David, B., Dowsley, R.: Insured mpc: efficient secure multiparty computation with punishable abort. Cryptology ePrint Archive, Report 2018/942 (2018). https://eprint.iacr.org/2018/942
  5. 5.
    Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_4CrossRefzbMATHGoogle Scholar
  6. 6.
    Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_24CrossRefGoogle Scholar
  7. 7.
    Bentov, I., Kumaresan, R., Miller, A.: instantaneous decentralized poker. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_15CrossRefGoogle Scholar
  8. 8.
    Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and Improvement of Lindell’s UC-Secure Commitment Schemes. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_34CrossRefzbMATHGoogle Scholar
  9. 9.
    Brandão, L.T.A.N.: Very-efficient simulatable flipping of many coins into a well. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 297–326. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49387-8_12CrossRefGoogle Scholar
  10. 10.
    Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May (2018)Google Scholar
  11. 11.
    Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_11CrossRefGoogle Scholar
  12. 12.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October (2001)Google Scholar
  13. 13.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_2CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, May (2002)Google Scholar
  15. 15.
    Cascudo, I.: On squares of cyclic codes. IEEE Trans. Inf. Theor. 65(2), 1034–1047 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cascudo, I., Damgård, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_7CrossRefGoogle Scholar
  17. 17.
    Cascudo, I., Damgård, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.: Additively homomorphic uc commitments with optimal amortized overhead. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_22CrossRefGoogle Scholar
  18. 18.
    Cascudo, I., Damgård, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.: Efficient UC commitment extension with homomorphism for free (and applications) [full version]. Cryptology ePrint Archive, Report 2018/983 (2018). https://eprint.iacr.org/2018/983
  19. 19.
    Damgård, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and efficient homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 213–232. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_12CrossRefGoogle Scholar
  20. 20.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  21. 21.
    Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 587–619. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_20CrossRefGoogle Scholar
  22. 22.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity of additively homomorphic UC commitments. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_23CrossRefzbMATHGoogle Scholar
  23. 23.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_32CrossRefGoogle Scholar
  24. 24.
    Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC commitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 677–694. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_37CrossRefGoogle Scholar
  25. 25.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–122. ACM Press, May (2008)Google Scholar
  26. 26.
    Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_25CrossRefGoogle Scholar
  27. 27.
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_25CrossRefGoogle Scholar
  28. 28.
    Randriambololona, H.: Asymptotically good binary linear codes with asymptotically good self-intersection spans. IEEE Trans. Inf. Theor. 59(5), 3038–3045 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 49–62. ACM Press, June (2016)Google Scholar
  30. 30.
    Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudorandom generator constructions. In: Karloff, H.J., Pitassi, T. (eds) 44th ACM STOC, pp. 817–836. ACM Press, May (2012)Google Scholar
  31. 31.
    Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press, May (2018)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Ignacio Cascudo
    • 1
    Email author
  • Ivan Damgård
    • 2
  • Bernardo David
    • 3
  • Nico Döttling
    • 4
  • Rafael Dowsley
    • 5
  • Irene Giacomelli
    • 6
  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.Aarhus UniversityAarhusDenmark
  3. 3.IT University of CopenhagenCopenhagenDenmark
  4. 4.CISPA Helmholtz Center for Information SecuritySaarbrückenGermany
  5. 5.Bar Ilan UniversityTel AvivIsrael
  6. 6.Protocol Labs, Inc.BaselSwitzerland

Personalised recommendations