Efficient Explicit Constructions of Multipartite Secret Sharing Schemes

  • Qi ChenEmail author
  • Chunming Tang
  • Zhiqiang Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11922)


Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. Secret sharing schemes for multipartite access structures have received considerable attention due to the fact that multipartite secret sharing can be seen as a natural and useful generalization of threshold secret sharing.

This work deals with efficient and explicit constructions of ideal multipartite secret sharing schemes, while most of the known constructions are either inefficient or randomized. Most ideal multipartite secret sharing schemes in the literature can be classified as either hierarchical or compartmented. The main results are the constructions for ideal hierarchical access structures, a family that contains every ideal hierarchical access structure as a particular case such as the disjunctive hierarchical threshold access structure and the conjunctive hierarchical threshold access structure, and the constructions for compartmented access structures with upper bounds and compartmented access structures with lower bounds, two families of compartmented access structures.

On the basis of the relationship between multipartite secret sharing schemes, polymatroids, and matroids, the problem of how to construct a scheme realizing a multipartite access structure can be transformed to the problem of how to find a representation of a matroid from a presentation of its associated polymatroid. In this paper, we give efficient algorithms to find representations of the matroids associated to the three families of multipartite access structures. More precisely, based on know results about integer polymatroids, for each of the three families of access structures, we give an efficient method to find a representation of the integer polymatroid over some finite field, and then over some finite extension of that field, we give an efficient method to find a presentation of the matroid associated to the integer polymatroid. Finally, we construct ideal linear schemes realizing the three families of multipartite access structures by efficient methods.


Secret sharing schemes Multipartite access structures Matroids Polymatroids 



The authors would like to thank the reviewers for their helpful comments and suggestions. This research was supported in part by the Foundation of National Natural Science of China (No. 61772147, 61702124), Guangdong Province Natural Science Foundation of major basic research and Cultivation project (No. 2015A030308016), Project of Ordinary University Innovation Team Construction of Guangdong Province (No. 2015KCXTD014), Collaborative Innovation Major Projects of Bureau of Education of Guangzhou City (No. 1201610005) and National Cryptography Development Fund (No. MMJJ20170117).


  1. 1.
    Ball, S., Padró, C., Weiner, Z., Xing, C.: On the representability of the biuniform matroid. SIAM J. Discrete Math. 27(3), 1482–1491 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). Scholar
  3. 3.
    Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold secret sharing. SIAM J. Discrete Math. 22(1), 360–397 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988)Google Scholar
  6. 6.
    Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). Scholar
  7. 7.
    Beutelspacher, A., Wettl, F.: On 2-level secret sharing. Des. Codes Cryptogr. 3(2), 127–134 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference 1979, AFIPS Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  9. 9.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Maths. Combin. Comp. 9, 105–113 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991)zbMATHGoogle Scholar
  11. 11.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988)Google Scholar
  12. 12.
    Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2), 87–96 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Collins, M.J.: A note on ideal tripartite access structures. Cryptology ePrint Archive, Report 2002/193.
  14. 14.
    Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). Scholar
  15. 15.
    Cramer, R., et al.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 327–343. Springer, Heidelberg (2005). Scholar
  16. 16.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). Scholar
  17. 17.
    Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25(3), 434–463 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf. Theory 58(5), 3273–3286 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Farràs, O., Padró, C., Xing, C., Yang, A.: Natural generalizations of threshold secret sharing. IEEE Trans. Inf. Theory 60(3), 1652–1664 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fehr, S.: Efficient construction of the dual span program. Manuscript, May (1999)Google Scholar
  21. 21.
    Giulietti, M., Vincenti, R.: Three-level secret sharing schemes from the twisted cubic. Discrete Math. 310(22), 3236–3240 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Herranz, J., Sáez, G.: New results on multipartite access structures. IEE Proc. Inf. Secur. 153(4), 153–162 (2006)CrossRefGoogle Scholar
  23. 23.
    Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combinat. 16(3), 239–268 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proceedings of the IEEE Global Telecommunication Conference, Globecom 1987, pp. 99–102 (1987)Google Scholar
  25. 25.
    Kothari, S.C.: Generalized linear threshold scheme. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985). Scholar
  26. 26.
    Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, pp. 276–279 (1993)Google Scholar
  27. 27.
    Massey, J.L.: Some applications of coding theory in cryptography. Codes and Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)Google Scholar
  28. 28.
    Oxley, J.G.: Matroid Theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992)zbMATHGoogle Scholar
  29. 29.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inf. Theory 46(7), 2596–2604 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003)zbMATHGoogle Scholar
  31. 31.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2007). Scholar
  33. 33.
    Shoup, V.: New algorithm for finding irreducible polynomials over finite fields. Math. Comput. 54, 435–447 (1990)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). Scholar
  35. 35.
    Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptol. 58(1), 11–21 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryptol. 22(2), 227–258 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)zbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Advanced Institute of Engineering Science for Intelligent ManufacturingGuangzhou UniversityGuangzhouChina
  2. 2.College of Mathematics and Information ScienceGuangzhou UniversityGuangzhouChina

Personalised recommendations