Numerical Method for Comparison on Homomorphically Encrypted Numbers

  • Jung Hee CheonEmail author
  • Dongwoo Kim
  • Duhyeong Kim
  • Hun Hee Lee
  • Keewoo Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11922)


We propose a new method to compare numbers which are encrypted by Homomorphic Encryption (HE). Previously, comparison and min/max functions were evaluated using Boolean functions where input numbers are encrypted bit-wise. However, the bit-wise encryption methods require relatively expensive computations for basic arithmetic operations such as addition and multiplication.

In this paper, we introduce iterative algorithms that approximately compute the min/max and comparison operations of several numbers which are encrypted word-wise. From the concrete error analyses, we show that our min/max and comparison algorithms have \(\varTheta (\alpha )\) and \(\varTheta (\alpha \log \alpha )\) computational complexity to obtain approximate values within an error rate \(2^{-\alpha }\), while the previous minimax polynomial approximation method requires the exponential complexity \(\varTheta (2^{\alpha /2})\) and \(\varTheta (\sqrt{\alpha }\cdot 2^{\alpha /2})\), respectively. Our algorithms achieve (quasi-)optimality in terms of asymptotic computational complexity among polynomial approximations for min/max and comparison operations. The comparison algorithm is extended to several applications such as computing the top-k elements and counting numbers over the threshold in encrypted state.

Our method enables word-wise HEs to enjoy comparable performance in practice with bit-wise HEs for comparison operations while showing much better performance on polynomial operations. Computing an approximate maximum value of any two \(\ell \)-bit integers encrypted by HEAAN, up to error \(2^{\ell -10}\), takes only 1.14 ms in amortized running time, which is comparable to the result based on bit-wise HEs.


Homomorphic Encryption Comparison Min/Max Iterative method 



We thank Minki Hhan for suggesting a new interpretation on the efficiency of our algorithms, and Yongsoo Song for several valuable comments. We also thank to anonymous reviewers of ASIACRYPT 2019. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No. 2017R1A5A1015626).


  1. 1.
    Albrecht, M.R.: A sage module for estimating the concrete security of learning with errors instances (2017).
  2. 2.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernstein, S.: Sur la meilleure approximation de \(|\)x\(|\) par des polynomes de degrés donnés. Acta Math. 37(1), 1–57 (1914)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). Scholar
  5. 5.
    Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV, TFHE and HEAAN fully homomorphic encryption and predictions for deep learning. Cryptology ePrint Archive, Report 2018/758 (2018).
  6. 6.
    Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). Scholar
  7. 7.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). Scholar
  8. 8.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM (2012)Google Scholar
  9. 9.
    Brown, K.: Probability of intersecting intervals.
  10. 10.
    Chatterjee, A., SenGupta, I.: Sorting of fully homomorphic encrypted cloud data: can partitioning be effective? IEEE Trans. Serv. Comput. (2017)Google Scholar
  11. 11.
    Cheon, J.H., et al.: Toward a secure drone system: flying with real-time homomorphic authenticated encryption. IEEE Access 6, 24325–24339 (2018)CrossRefGoogle Scholar
  12. 12.
    Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-preserving computations of predictive medical models with minimax approximation and non-adjacent form. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 53–74. Springer, Cham (2017). Scholar
  13. 13.
    Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). Scholar
  14. 14.
    Cheon, J.H., Kim, D., Kim, Y., Song, Y.: Ensemble method for privacy-preserving logistic regression based on homomorphic encryption. IEEE Access 6, 46938–46948 (2018)CrossRefGoogle Scholar
  15. 15.
    Cheon, J.H., Kim, D., Park, J.H.: Towards a practical clustering analysis over encrypted data. Cryptology ePrint Archive, Report 2019/465 (2019).
  16. 16.
    Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 142–159. Springer, Heidelberg (2015). Scholar
  17. 17.
    Chialva, D., Dooms, A.: Conditionals in homomorphic encryption and machine learning applications. Cryptology ePrint Archive, Report 2018/1032 (2018).
  18. 18.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). Scholar
  19. 19.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). Scholar
  20. 20.
    Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016). Scholar
  21. 21.
    Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with FHE: the case of logistic regression. In: Proceedings of the 6th Workshop on Encrypted Computing and Applied Homomorphic Cryptography, pp. 1–12. ACM (2018)Google Scholar
  22. 22.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). Scholar
  23. 23.
    Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). Scholar
  24. 24.
    Emmadi, N., Gauravaram, P., Narumanchi, H., Syed, H.: Updates on sorting of fully homomorphic encrypted data. In: 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 19–24. IEEE (2015)Google Scholar
  25. 25.
    Eremenko, A., Yuditskii, P.: Uniform approximation of sgn(x) by polynomials and entire functions. J. d’Analyse Mathématique 101(1), 313–324 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012:144 (2012)Google Scholar
  27. 27.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009).
  28. 28.
    Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012). Scholar
  29. 29.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). Scholar
  30. 30.
    Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning (2016)Google Scholar
  31. 31.
    Goldschmidt, R.E.: Applications of division by convergence. Ph.D. thesis, Massachusetts Institute of Technology (1964)Google Scholar
  32. 32.
    Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). Scholar
  33. 33.
    Jackson, D.: The Theory of Approximation, vol. 11. American Mathematical Society (1930)Google Scholar
  34. 34.
    Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, pp. 453–478. Springer, Cham (2018). Scholar
  35. 35.
    Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training based on the approximate homomorphic encryption. BMC Med. Genomics 11(4), 83 (2018)CrossRefGoogle Scholar
  36. 36.
    Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on homomorphic encryption: design and evaluation. JMIR Med. Inform. 6(2), e19 (2018)CrossRefGoogle Scholar
  37. 37.
    Kocabas, O., Soyata, T.: Utilizing homomorphic encryption to implement secure and private medical cloud computing. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), pp. 540–547. IEEE (2015)Google Scholar
  38. 38.
    Pachón, R., Trefethen, L.N.: Barycentric-Remez algorithms for best polynomial approximation in the chebfun system. BIT Numer. Math. 49(4), 721 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Phillips, G.M.: Best approximation. In: Phillips, G.M. (ed.) Interpolation and Approximation by Polynomials. CBM, pp. 49–118. Springer, New York (2003). Scholar
  41. 41.
    Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)CrossRefGoogle Scholar
  42. 42.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)MathSciNetGoogle Scholar
  43. 43.
    Togan, M., Morogan, L., Plesca, C.: Comparison-based applications for fully homomorphic encrypted data. In: Proceedings of the Romanian Academy-Series A: Mathematics, Physics, Technical Sciences, Information Science, vol. 16, p. 329 (2015)Google Scholar
  44. 44.
    Wilkes, M.V.: The Preparation of Programs for an Electronic Digital Computer: with Special Reference to the EDSAC and the Use of a Library of Subroutines. Addison-Wesley Press (1951)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Jung Hee Cheon
    • 1
    Email author
  • Dongwoo Kim
    • 1
  • Duhyeong Kim
    • 1
  • Hun Hee Lee
    • 1
  • Keewoo Lee
    • 1
  1. 1.Department of Mathematical SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations