Hard Isogeny Problems over RSA Moduli and Groups with Infeasible Inversion
Abstract
We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders.
Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.
Notes
Acknowledgments
The research of Salim Ali Altuğ is supported by the grant DMS-1702176. The research of Yilei Chen was conducted at Boston University supported by the NSF MACS project and NSF grant CNS-1422965.
References
- 1.Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)MathSciNetCrossRefGoogle Scholar
- 2.Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1CrossRefGoogle Scholar
- 3.Buchmann, J.A., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. J. Cryptology 1(2), 107–118 (1988)MathSciNetCrossRefGoogle Scholar
- 4.Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptology 22(1), 93–113 (2009)MathSciNetCrossRefGoogle Scholar
- 5.Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-662-02945-9CrossRefGoogle Scholar
- 6.Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology 10(4), 233–260 (1997)MathSciNetCrossRefGoogle Scholar
- 7.Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006)Google Scholar
- 8.Couveignes, J.-M., Morain, F.: Schoof’s algorithm and isogeny cycles. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 43–58. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1_42CrossRefGoogle Scholar
- 9.Cox, D.A.: Primes of the Form \(x^2+ ny^2\): Fermat, Class Field Theory, and Complex Multiplication, vol. 34. Wiley, Hoboken (2011)Google Scholar
- 10.Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_4CrossRefGoogle Scholar
- 11.Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
- 12.Elkies, N.D., et al.: Elliptic and modular curves over finite fields and related computational issues. AMS IP Stud. Adv. Math. 7, 21–76 (1998)MathSciNetCrossRefGoogle Scholar
- 13.Enge, A., Sutherland, A.V.: Class invariants by the CRT method. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 142–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_14CrossRefGoogle Scholar
- 14.De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint arXiv:1711.04062 (2017)
- 15.Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45455-1_23CrossRefGoogle Scholar
- 16.Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)Google Scholar
- 17.Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
- 18.Hohenberger, S.R.: The cryptographic impact of groups with infeasible inversion. Master’s thesis, Massachusetts Institute of Technology (2003)Google Scholar
- 19.Ionica, S., Joux, A.: Pairing the volcano. Math. Comput. 82(281), 581–603 (2013)MathSciNetCrossRefGoogle Scholar
- 20.Irrer, J., Lokam, S., Opyrchal, L., Prakash, A.: Infeasible group inversion and broadcast encryption. University of Michigan Electrical Engineering and Computer Science Tech Note CSE-TR-485-04 (2004)Google Scholar
- 21.Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2CrossRefzbMATHGoogle Scholar
- 22.Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)MathSciNetCrossRefGoogle Scholar
- 23.Kohel, D.R.: Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California, Berkeley (1996)Google Scholar
- 24.Kunihiro, N., Koyama, K.: Equivalence of counting the number of points on elliptic curve over the ring Zn and factoring n. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 47–58. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054116CrossRefGoogle Scholar
- 25.Lay, G.-J., Zimmer, H.G.: Constructing elliptic curves with given group order over large finite fields. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 250–263. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1_64CrossRefGoogle Scholar
- 26.Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefGoogle Scholar
- 27.Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3), 649–673 (1987)MathSciNetCrossRefGoogle Scholar
- 28.McCurley, K.S.: Cryptographic key distribution and computation in class groups. IBM Thomas J. Watson Research Division (1988)Google Scholar
- 29.Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31CrossRefGoogle Scholar
- 30.Molnar, D.: Homomorphic signature schemes. B.s. thesis, Harvard College (2003)Google Scholar
- 31.Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006)Google Scholar
- 32.Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comput. 44(170), 483–494 (1985)MathSciNetzbMATHGoogle Scholar
- 33.Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7(1), 219–254 (1995)MathSciNetCrossRefGoogle Scholar
- 34.Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6CrossRefzbMATHGoogle Scholar
- 35.Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, New York (2013). https://doi.org/10.1007/978-1-4612-0851-8CrossRefGoogle Scholar
- 36.Sutherland, A.V.: Isogeny kernels and division polynomials. https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18_783S17_lec6.pdf. Accessed 03 Sept 2018
- 37.Sutherland, A.V.: Isogeny volcanoes. Open Book Ser. 1(1), 507–530 (2013)MathSciNetCrossRefGoogle Scholar
- 38.Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math. 2(2), 134–144 (1966)MathSciNetCrossRefGoogle Scholar
- 39.Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de Paris 273, 238–241 (1971)MathSciNetzbMATHGoogle Scholar
- 40.Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on unknown order groups from indistinguishability obfuscation and its applications. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 90–107. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_6CrossRefGoogle Scholar