Advertisement

Structure-Preserving and Re-randomizable RCCA-Secure Public Key Encryption and Its Applications

  • Antonio FaonioEmail author
  • Dario Fiore
  • Javier Herranz
  • Carla Ràfols
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11923)

Abstract

Re-randomizable RCCA-secure public key encryption (Rand-RCCA PKE) schemes reconcile the property of re-randomizability of the ciphertexts with the need of security against chosen-ciphertexts attacks. In this paper we give a new construction of a Rand-RCCA PKE scheme that is perfectly re-randomizable. Our construction is structure-preserving, can be instantiated over Type-3 pairing groups, and achieves better computation and communication efficiency than the state of the art perfectly re-randomizable schemes (e.g., Prabhakaran and Rosulek, CRYPTO’07). Next, we revive the Rand-RCCA notion showing new applications where our Rand-RCCA PKE scheme plays a fundamental part: (1) We show how to turn our scheme into a publicly-verifiable Rand-RCCA scheme; (2) We construct a malleable NIZK with a (variant of) simulation soundness that allows for re-randomizability; (3) We propose a new UC-secure Verifiable Mix-Net protocol that is secure in the common reference string model. Thanks to the structure-preserving property, all these applications are efficient. Notably, our Mix-Net protocol is the most efficient universally verifiable Mix-Net (without random oracle) where the CRS is an uniformly random string of size independent of the number of senders. The property is of the essence when such protocols are used in large scale.

References

  1. 1.
    Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_17CrossRefGoogle Scholar
  2. 2.
    Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_5CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  4. 4.
    Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack (Extended Abstract). In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_7CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_13CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_33CrossRefGoogle Scholar
  7. 7.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_18CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_8CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_35CrossRefzbMATHGoogle Scholar
  11. 11.
    Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_13CrossRefGoogle Scholar
  12. 12.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_2CrossRefGoogle Scholar
  13. 13.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  14. 14.
    Faonio, A., Fiore, D.: Optimistic mixing, revisited. Cryptology ePrint Archive, Report 2018/864 (2018). https://eprint.iacr.org/2018/864
  15. 15.
    Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-randomizable RCCA-secure public key encryption and its applications. Cryptology ePrint Archive, Report 2019/955 (2019). https://eprint.iacr.org/2019/955
  16. 16.
    Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_32CrossRefGoogle Scholar
  17. 17.
    Fauzi, P., Lipmaa, H., Siim, J., Zając, M.: An efficient pairing-based shuffle argument. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 97–127. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_4CrossRefGoogle Scholar
  18. 18.
    Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_17CrossRefGoogle Scholar
  19. 19.
    Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24660-2_14CrossRefGoogle Scholar
  20. 20.
    Golle, P., Zhong, S., Boneh, D., Jakobsson, M., Juels, A.: Optimistic mixing for exit-polls. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 451–465. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_28CrossRefGoogle Scholar
  21. 21.
    Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_9CrossRefGoogle Scholar
  22. 22.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  23. 23.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  24. 24.
    Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for structural batch verification in bilinear groups with applications to Groth-Sahai proofs. In: ACM CCS 17, pp. 1547–1564. ACM Press (2017)Google Scholar
  25. 25.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_1CrossRefGoogle Scholar
  26. 26.
    Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_17CrossRefGoogle Scholar
  27. 27.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_30CrossRefGoogle Scholar
  28. 28.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4CrossRefGoogle Scholar
  29. 29.
    Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 247–276. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_11CrossRefGoogle Scholar
  30. 30.
    Micali, S., Rackoff, C., Sloan, B.: The notion of security for probabilistic cryptosystems (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 381–392. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_27CrossRefGoogle Scholar
  31. 31.
    Naveed, M., et al.: Controlled functional encryption. In: ACM CCS 14, pp. 1280–1291. ACM Press (2014)Google Scholar
  32. 32.
    Pereira, O., Rivest, R.L.: Marked mix-nets. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 353–369. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_22CrossRefGoogle Scholar
  33. 33.
    Phan, D.H., Pointcheval, D.: OAEP 3-round: a generic and secure asymmetric encryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 63–77. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_5CrossRefGoogle Scholar
  34. 34.
    Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_29CrossRefGoogle Scholar
  35. 35.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press (1999)Google Scholar
  36. 36.
    Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054113CrossRefGoogle Scholar
  37. 37.
    Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 317–335. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_18CrossRefGoogle Scholar
  38. 38.
    Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593447_15CrossRefGoogle Scholar
  39. 39.
    Wikström, D.: Verificatum (2010). https://www.verificatum.com

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Antonio Faonio
    • 1
    Email author
  • Dario Fiore
    • 1
  • Javier Herranz
    • 2
  • Carla Ràfols
    • 3
  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.Cybercat and Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Cybercat and Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations