Advertisement

Simple and Efficient KDM-CCA Secure Public Key Encryption

  • Fuyuki KitagawaEmail author
  • Takahiro Matsuda
  • Keisuke Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11923)

Abstract

We propose two efficient public key encryption (PKE) schemes satisfying key dependent message security against chosen ciphertext attacks (KDM-CCA security). The first one is KDM-CCA secure with respect to affine functions. The other one is KDM-CCA secure with respect to polynomial functions. Both of our schemes are based on the KDM-CPA secure PKE schemes proposed by Malkin, Teranishi, and Yung (EUROCRYPT 2011). Although our schemes satisfy KDM-CCA security, their efficiency overheads compared to Malkin et al.’s schemes are very small. Thus, efficiency of our schemes is drastically improved compared to the existing KDM-CCA secure schemes.

We achieve our results by extending the construction technique by Kitagawa and Tanaka (ASIACRYPT 2018). Our schemes are obtained via semi-generic constructions using an IND-CCA secure PKE scheme as a building block. We prove the KDM-CCA security of our schemes based on the decisional composite residuosity (DCR) assumption and the IND-CCA security of the building block PKE scheme.

Moreover, our security proofs are tight if the IND-CCA security of the building block PKE scheme is tightly reduced to its underlying computational assumption. By instantiating our schemes using existing tightly IND-CCA secure PKE schemes, we obtain the first tightly KDM-CCA secure PKE schemes whose ciphertext consists only of a constant number of group elements.

Keywords

Key dependent message security Chosen ciphertext security 

Notes

Acknowledgement

A part of this work was supported by NTT Secure Platform Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR19F6 and JPMJCR14D6, and JSPS KAKENHI JP16H01705 and JP17H01695.

References

  1. 1.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: ICS 2011, pp. 45–60 (2011) Google Scholar
  3. 3.
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36492-7_6CrossRefzbMATHGoogle Scholar
  4. 4.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_7CrossRefGoogle Scholar
  5. 5.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability (or: Quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_1CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_20CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_7CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Jurik, M.: A generalisation, a simplication and some applications of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_9CrossRefzbMATHGoogle Scholar
  10. 10.
    Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_5CrossRefGoogle Scholar
  11. 11.
    Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 307–338. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_11CrossRefGoogle Scholar
  12. 12.
    Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_31CrossRefGoogle Scholar
  13. 13.
    Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_17CrossRefGoogle Scholar
  14. 14.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_35CrossRefGoogle Scholar
  15. 15.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_31CrossRefGoogle Scholar
  16. 16.
    Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_18CrossRefGoogle Scholar
  17. 17.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  18. 18.
    Kitagawa, F., Tanaka, K.: A framework for achieving KDM-CCA secure public-key encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 127–157. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03329-3_5CrossRefGoogle Scholar
  19. 19.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_26CrossRefGoogle Scholar
  20. 20.
    Libert, B., Qian, C.: Lossy algebraic filters with short tags. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 34–65. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17253-4_2 CrossRefGoogle Scholar
  21. 21.
    Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 559–583. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_22CrossRefGoogle Scholar
  22. 22.
    Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_28CrossRefGoogle Scholar
  23. 23.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC 1990, pp. 427–437 (1990)Google Scholar
  24. 24.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Fuyuki Kitagawa
    • 1
    Email author
  • Takahiro Matsuda
    • 2
  • Keisuke Tanaka
    • 3
  1. 1.NTT Secure Platform LaboratoriesTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations