Advertisement

MILP-aided Method of Searching Division Property Using Three Subsets and Applications

  • Senpeng WangEmail author
  • Bin Hu
  • Jie Guan
  • Kai Zhang
  • Tairong Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11923)

Abstract

Division property is a generalized integral property proposed by Todo at EUROCRYPT 2015, and then conventional bit-based division property (CBDP) and bit-based division property using three subsets (BDPT) were proposed by Todo and Morii at FSE 2016. At the very beginning, the two kinds of bit-based division properties once couldn’t be applied to ciphers with large block size just because of the huge time and memory complexity. At ASIACRYPT 2016, Xiang et al. extended Mixed Integer Linear Programming (MILP) method to search integral distinguishers based on CBDP. BDPT can find more accurate integral distinguishers than CBDP, but it couldn’t be modeled efficiently.

This paper focuses on the feasibility of searching integral distinguishers based on BDPT. We propose the pruning techniques and fast propagation of BDPT for the first time. Based on these, an MILP-aided method for the propagation of BDPT is proposed. Then, we apply this method to some block ciphers. For SIMON64, PRESENT, and RECTANGLE, we find more balanced bits than the previous longest distinguishers. For LBlock, we find a better 16-round integral distinguisher with less active bits. For other block ciphers, our results are in accordance with the previous longest distinguishers.

Cube attack is an important cryptanalytic technique against symmetric cryptosystems, especially for stream ciphers. And the most important step in cube attack is superpoly recovery. Inspired by the CBDP based cube attack proposed by Todo at CRYPTO 2017, we propose a method which uses BDPT to recover the superpoly in cube attack. We apply this new method to round-reduced Trivium. To be specific, the time complexity of recovering the superpoly of 832-round Trivium at CRYPTO 2017 is reduced from \(2^{77}\) to practical, and the time complexity of recovering the superpoly of 839-round Trivium at CRYPTO 2018 is reduced from \(2^{79}\) to practical. Then, we propose a theoretical attack which can recover the superpoly of Trivium up to 841 round.

Keywords

Integral distinguisher Division property MILP Block cipher Cube attack Stream cipher 

Notes

Acknowledgement

The authors would like to thank the anonymous reviewers for their detailed comments and suggestions. This work was supported by the National Natural Science Foundation of China [Grant No. 61572516, 61802437].

References

  1. 1.
    Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, M.: MILP modeling for (large) S-boxes to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)Google Scholar
  2. 2.
    Beaulieu, R., Shors, D., Smith, J., Treatman–Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive 2013:404 (2013). http://eprint.iacr.org/2013/404
  3. 3.
    Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74735-2_31CrossRefGoogle Scholar
  4. 4.
    Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_24CrossRefGoogle Scholar
  5. 5.
    De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_18CrossRefGoogle Scholar
  6. 6.
    Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_16CrossRefGoogle Scholar
  7. 7.
    Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21702-9_10CrossRefGoogle Scholar
  8. 8.
    Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers with ease. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. Lecture Notes in Computer Science, vol. 11349, pp. 115–138. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10970-7_6CrossRefGoogle Scholar
  9. 9.
    Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Trivium. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 160–184. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_6CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45661-9_9CrossRefGoogle Scholar
  12. 12.
    Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Observations on the dynamic cube attack of 855-Round TRIVIUM from Crypto 2018. IACR Cryptology ePrint Archive 2018:972 (2018). https://eprint.iacr.org/2018/972.pdf
  13. 13.
    Hu, K., Wang, M.: Automatic search for a variant of division property using three subsets. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 412–432. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-12612-4_21CrossRefGoogle Scholar
  14. 14.
    Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on reduced-round keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_9CrossRefGoogle Scholar
  15. 15.
    Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_23CrossRefGoogle Scholar
  16. 16.
    Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_8CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division property. Sci. Chin. (Inf. Sci.) 2017(09), 274–276 (2017)Google Scholar
  19. 19.
    Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_9CrossRefGoogle Scholar
  20. 20.
    Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_20CrossRefGoogle Scholar
  21. 21.
    Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_18CrossRefGoogle Scholar
  22. 22.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_12CrossRefGoogle Scholar
  23. 23.
    Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_9CrossRefGoogle Scholar
  24. 24.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21554-4_19CrossRefGoogle Scholar
  25. 25.
    Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13039-2_9CrossRefGoogle Scholar
  26. 26.
    Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division property based cube attacks exploiting algebraic properties of superpoly. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_10CrossRefGoogle Scholar
  27. 27.
    Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_24CrossRefGoogle Scholar
  28. 28.
    Xie, X., Tian, T.: Improved distinguisher search techniques based on parity sets. Sci. Chin. Inf. Sci. 55, 2712 (2018)Google Scholar
  29. 29.
    Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48324-4_16CrossRefGoogle Scholar
  30. 30.
    Ye, C., Tian, T.: Deterministic cube attacks. IACR Cryptology ePrint Archive, 2018:1028 (2018). https://eprint.iacr.org/2018/1082.pdf
  31. 31.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle: a bit-slice lightweight block cipher suitable for multiple platforms. Sci. Chin. Inf. Sci. 58(12), 1–15 (2015)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Senpeng Wang
    • 1
    Email author
  • Bin Hu
    • 1
  • Jie Guan
    • 1
  • Kai Zhang
    • 1
  • Tairong Shi
    • 1
  1. 1.PLA SSF Information Engineering UniversityZhengzhouChina

Personalised recommendations