Advertisement

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures

  • Yilei ChenEmail author
  • Nicholas Genise
  • Pratyay Mukherjee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11923)

Abstract

We study a relaxed notion of lattice trapdoor called approximate trapdoor, which is defined to be able to invert Ajtai’s one-way function approximately instead of exactly. The primary motivation of our study is to improve the efficiency of the cryptosystems built from lattice trapdoors, including the hash-and-sign signatures.

Our main contribution is to construct an approximate trapdoor by modifying the gadget trapdoor proposed by Micciancio and Peikert [Eurocrypt 2012]. In particular, we show how to use the approximate gadget trapdoor to sample short preimages from a distribution that is simulatable without knowing the trapdoor. The analysis of the distribution uses a theorem (implicitly used in past works) regarding linear transformations of discrete Gaussians on lattices.

Our approximate gadget trapdoor can be used together with the existing optimization techniques to improve the concrete performance of the hash-and-sign signature in the random oracle model under (Ring-)LWE and (Ring-)SIS assumptions. Our implementation shows that the sizes of the public-key & signature can be reduced by half from those in schemes built from exact trapdoors.

Notes

Acknowledgments

We are grateful to Daniele Micciancio for valuable advice and his generous sharing of ideas on the subject of this work. We would also like to thank Léo Ducas, Steven Galbraith, Thomas Prest, Yang Yu, Chuang Gao, Eamonn Postlethwaite, Chris Peikert, and the anonymous reviewers for their helpful suggestions and comments.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  2. 2.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)Google Scholar
  3. 3.
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48523-6_1CrossRefGoogle Scholar
  4. 4.
    Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryptography standardization process. US Department of Commerce, National Institute of Standards and Technology (2019)Google Scholar
  5. 5.
    Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_19CrossRefGoogle Scholar
  6. 6.
    Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17656-3_25CrossRefGoogle Scholar
  7. 7.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Alkim, E., Barreto, P.S.L.M., Bindel, N., Longa, P., Ricardini, J.E.: The lattice-based digital signature scheme qTESLA. IACR Cryptology ePrint Archive 2019, p. 85 (2019)Google Scholar
  9. 9.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35CrossRefGoogle Scholar
  11. 11.
    Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04852-9_2CrossRefGoogle Scholar
  12. 12.
    Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms for the inhomogeneous short integer solution problem. J. Cryptol. 32(1), 35–83 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    El Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43414-7_3CrossRefGoogle Scholar
  14. 14.
    Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-79063-3_13CrossRefGoogle Scholar
  15. 15.
    Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_3CrossRefGoogle Scholar
  16. 16.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM (2013)Google Scholar
  17. 17.
    Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: ITCS, pp. 147–156. ACM (2016)Google Scholar
  18. 18.
    Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_16CrossRefGoogle Scholar
  19. 19.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, C., Genise, N., Micciancio, D., Polyakov, Y., Rohloff, K.: Implementing token-based obfuscation under (ring) LWE. IACR Cryptology ePrint Archive 2018, p. 1222 (2018)Google Scholar
  21. 21.
    Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_20CrossRefGoogle Scholar
  22. 22.
    Chen, Y.: Réduction de réseau et sécurité concréte du chiffrement complétement homomorphe. PhD thesis, Paris 7 (2013)Google Scholar
  23. 23.
    del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 574–591 (2018)Google Scholar
  24. 24.
    Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–145. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_5CrossRefGoogle Scholar
  25. 25.
    Ducas, L., Galbraith, S., Prest, T., Yang, Y.: Integral matrix gram root and lattice Gaussian sampling without floats. IACR Cryptology ePrint Archive 2019, p. 320 (2019)Google Scholar
  26. 26.
    Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)MathSciNetGoogle Scholar
  27. 27.
    Fouque, P.-A., et al.: Falcon: fast-fourier lattice-based compact signatures over NTRU (2018)Google Scholar
  28. 28.
    Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_7CrossRefGoogle Scholar
  29. 29.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  30. 30.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_20CrossRefGoogle Scholar
  31. 31.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  32. 32.
    Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_20CrossRefGoogle Scholar
  33. 33.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052231CrossRefGoogle Scholar
  34. 34.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC, pp. 545–554. ACM (2013)Google Scholar
  35. 35.
    Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS, pp. 612–621. IEEE Computer Society (2017)Google Scholar
  36. 36.
    Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and evaluation of improved gaussian sampling for lattice trapdoors. In: Proceedings of the 6th Workshop on Encrypted Computing and Applied Homomorphic Cryptography, pp. 61–71. ACM (2018)Google Scholar
  37. 37.
    Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-obfuscation using graph-induced encoding. In: ACM Conference on Computer and Communications Security, pp. 783–798. ACM (2017)Google Scholar
  38. 38.
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36563-X_9CrossRefGoogle Scholar
  39. 39.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054868CrossRefGoogle Scholar
  40. 40.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_43CrossRefGoogle Scholar
  41. 41.
    Micciancio, D.: Personal communication (2018)Google Scholar
  42. 42.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41 CrossRefGoogle Scholar
  43. 43.
    Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_2CrossRefGoogle Scholar
  44. 44.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measure. SIAM J. Comput. 37(1), 267–302 (2007)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_1CrossRefGoogle Scholar
  46. 46.
    Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_17CrossRefGoogle Scholar
  47. 47.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 333–342 (2009)Google Scholar
  48. 48.
    Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)Google Scholar
  49. 49.
    Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_8CrossRefGoogle Scholar
  50. 50.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Compressed Sensing, pp. 210–268. Cambridge University Press (2012)Google Scholar
  52. 52.
    Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: FOCS, pp. 600–611. IEEE Computer Society (2017)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Yilei Chen
    • 1
    Email author
  • Nicholas Genise
    • 2
  • Pratyay Mukherjee
    • 1
  1. 1.Visa ResearchPalo AltoUSA
  2. 2.University of CaliforniaSan DiegoUSA

Personalised recommendations