Advertisement

Towards Attribute-Based Encryption for RAMs from LWE: Sub-linear Decryption, and More

  • Prabhanjan AnanthEmail author
  • Xiong Fan
  • Elaine Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11921)

Abstract

Attribute based encryption (ABE) is an advanced encryption system with a built-in mechanism to generate keys associated with functions which in turn provide restricted access to encrypted data. Most of the known candidates of attribute based encryption model the functions as circuits. This results in significant efficiency bottlenecks, especially in the setting where the function associated with the ABE key is represented by a random access machine (RAM) and a database, with the runtime of the RAM program being sublinear in the database size. In this work we study the notion of attribute based encryption for random access machines (RAMs), introduced in the work of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich (Crypto 2013). We present a construction of attribute based encryption for RAMs satisfying sublinear decryption complexity assuming learning with errors; this is the first construction based on standard assumptions. Previously, Goldwasser et al. achieved this result based on non-falsifiable knowledge assumptions. We also consider a dual notion of ABE for RAMs, where the database is in the ciphertext and we show how to achieve this dual notion, albeit with large attribute keys, also based on learning with errors.

Notes

Acknowledgements

We would like to thank the anonymous reviewers of Asiacrypt 2019 and Jiaxin Pan for helpful suggestions to improve the presentation of the paper. Xiong Fan is supported in part by IBM under Agreement 4915013672 and NSF Award CNS-1561209. Elaine Shi is supported by NSF Award CNS-1617676.

References

  1. 1.
    Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_10CrossRefzbMATHGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  3. 3.
    Agrawal, S., Maitra, M.: FE and iO for turing machines from minimal assumptions. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 473–512. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_18CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learning with errors. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  5. 5.
    Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_17CrossRefGoogle Scholar
  6. 6.
    Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730 (2015). http://eprint.iacr.org/2015/730
  7. 7.
    Ananth, P., Lombardi, A.: Succinct garbling schemes from functional encryption through a local simulation paradigm. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 455–472. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_17CrossRefGoogle Scholar
  8. 8.
    Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_6CrossRefGoogle Scholar
  9. 9.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_31CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 792–821. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_28CrossRefGoogle Scholar
  11. 11.
    Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) ITCS 2016, pp. 345–356. ACM, January 2016Google Scholar
  12. 12.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  13. 13.
    Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_30CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Theory of Cryptography, pp. 253–273 (2011)CrossRefGoogle Scholar
  15. 15.
    Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxiliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 236–261. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_10CrossRefGoogle Scholar
  16. 16.
    Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_13CrossRefGoogle Scholar
  17. 17.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, June 2013Google Scholar
  18. 18.
    Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous ibe, leakage resilience and circular security from new assumptions. Technical report, Cryptology ePrint Archive, Report 2017/967 (2017). https://eprint.iacr.org/2017/967, 2017
  19. 19.
    Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_10CrossRefGoogle Scholar
  20. 20.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_1CrossRefGoogle Scholar
  21. 21.
    Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_13CrossRefGoogle Scholar
  22. 22.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_27CrossRefGoogle Scholar
  23. 23.
    Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_5CrossRefGoogle Scholar
  24. 24.
    Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_18CrossRefGoogle Scholar
  25. 25.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_27CrossRefGoogle Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_29CrossRefGoogle Scholar
  28. 28.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryption from multilinear maps. Cryptology ePrint Archive, Report 2014/622 (2014). http://eprint.iacr.org/2014/622
  29. 29.
    Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled ram. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 210–229. IEEE (2015)Google Scholar
  30. 30.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled ram from one-way functions. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 449–458. ACM (2015)Google Scholar
  31. 31.
    Garg, S., Srinivasan, A.: A simple construction of iO for turing machines. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 425–454. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_16CrossRefzbMATHGoogle Scholar
  32. 32.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_23CrossRefGoogle Scholar
  33. 33.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008Google Scholar
  34. 34.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  35. 35.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 555–564. ACM (2013)Google Scholar
  36. 36.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_30CrossRefGoogle Scholar
  37. 37.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–554. ACM Press, June 2013Google Scholar
  38. 38.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. J. ACM (JACM) 62(6), 45 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_25CrossRefGoogle Scholar
  40. 40.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 469–477. ACM Press, June 2015Google Scholar
  41. 41.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_47CrossRefGoogle Scholar
  42. 42.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  43. 43.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_9CrossRefGoogle Scholar
  44. 44.
    Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct functional encryption: improving security and efficiency, simultaneously. Cryptology ePrint Archive, Report 2018/974 (2018). https://eprint.iacr.org/2018/974
  45. 45.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_31CrossRefGoogle Scholar
  46. 46.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_4CrossRefGoogle Scholar
  47. 47.
    Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_26CrossRefGoogle Scholar
  48. 48.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  49. 49.
    O’Neill, Adam: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010, 556 (2010)Google Scholar
  50. 50.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 195–203. ACM (2007)Google Scholar
  51. 51.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_24CrossRefGoogle Scholar
  52. 52.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press, May/June 2009Google Scholar
  53. 53.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005Google Scholar
  54. 54.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  55. 55.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar
  56. 56.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_36CrossRefGoogle Scholar
  57. 57.
    Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_14CrossRefGoogle Scholar
  58. 58.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_26CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.MIT CASILBostonUSA
  2. 2.Cornell UniversityIthacaUSA

Personalised recommendations