Advertisement

Retrieval of Visually Shared News

  • Dmitrijs MilajevsEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1119)

Abstract

Some state funded media outlets are known to disseminate disinformation. The scientific community has shown a lot of interest in the network of bots that amplify this content. This work studies how the content of media outlets is spread among individual users on social media. We focus on tweets that include news articles as visual attachments because they are very powerful in delivering a convincing message, but are hard to retrieve. We propose and evaluate a model that is able to identify screenshots of news articles with a precision of 0.23 and a recall of 0.80. As an demonstration of the model, we analyzed the tweets of Twitter users from Latvia and identified patterns of news distribution.

Keywords

Social media News Opinion manipulation 

References

  1. 1.
    Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
  2. 2.
    Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning. PMLR, Atlanta, Georgia, USA, vol. 28, pp. 115–123, 17–19 June 2013. http://proceedings.mlr.press/v28/bergstra13.html
  3. 3.
    Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 2546–2554. Curran Associates, Inc. (2011). http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
  4. 4.
    Bērziņa, I., Cepuritis, M., Kaljula, D., Juurvee, I.: Russia’s footprint in the Nordic-Baltic information environment. Technical report, NATOStrategic Communications Centre of Excellence (2018). https://www.stratcomcoe.org/download/file/fid/78090
  5. 5.
    Bērziņš, J., et al.: Analysis of Russia’s information campaign against Ukraine. NATO StratCom Report (2014). https://www.stratcomcoe.org/download/file/fid/1886
  6. 6.
    Chollet, F., et al.: Keras (2015). https://keras.io
  7. 7.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996). https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
  8. 8.
    Ghosh, D., Scott, B.: Digital deceit: the technologies behind precision propaganda on the internet. Technical report, New America (2018). https://www.newamerica.org/public-interest-technology/policy-papers/digitaldeceit/
  9. 9.
    Helmus, T.C., et al.: Russian Social Media Influence: Understanding Russian Propaganda in Eastern Europe. RAND Corporation (2018). http://www.rand.org/t/RR2237
  10. 10.
    Lucas, E., Pomeranzev, P.: Winning the Information War: Techniques and Counter-strategies to Russian Propaganda in Central and Eastern Europe (2016). http://infowar.cepa.org/Winning-the-Information-War
  11. 11.
    Marwick, A., Lewis, R.: Media manipulation and disinformation online. Technical report, Data&Society Research Institute (2017). https://datasociety.net/output/media-manipulation-and-disinfo-online/
  12. 12.
    Milajevs, D.: Language use in a multilingual tweet corpus. Front. Artif. Intell. Appl. 307, 88–95 (2018).  https://doi.org/10.3233/978-1-61499-912-6-88. Presented at the Human Language Technologies - the Baltic Perspective conferenceCrossRefGoogle Scholar
  13. 13.
    Morozov, E.: The Net Delusion: The Dark Side of Internet Freedom. Perseus Books, Cambridge (2011)Google Scholar
  14. 14.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Phillips, W.: The oxygen of amplification: better practices for reporting on extremists, antagonists, and manipulators online. Technical report, Data&Society Research Institute (2018). https://datasociety.net/output/oxygen-of-amplification/
  16. 16.
    Sasaki, Y., et al.: The truth of the F-measure. Teach Tutor Mater 1(5), 1–5 (2007)Google Scholar
  17. 17.
    Singer, P., Brooking, E.: LikeWar: The Weaponization of Social Media. Houghton Mifflin Harcourt, Boston (2018). https://www.likewarbook.com/Google Scholar
  18. 18.
    Spaulding, S., Nair, D., Nelson, A.: Beyond the ballot: how the Kremlin works to undermine the U.S. justice system. Technical report, Center for Strategic and International Studies (CSIS), May 2019. https://www.csis.org/analysis/beyond-ballot-how-kremlin-works-undermine-us-justice-system
  19. 19.
    Tucker, J., et al.: Social media, political polarization, and political disinformation: a review of the scientific literature. SSRN, March 2018. https://eprints.lse.ac.uk/87402/1/Social-Media-Political-Polarization-and-Political-Disinformation-Literature-Review.pdf
  20. 20.
    Woolley, S.C., Howard, P.N.: Computational Propaganda: Political Parties, Politicians, and Political Manipulation on Social Media. Oxford University Press, Oxford (2019). https://www.oii.ox.ac.uk/research/books/computational-propaganda-political-parties-politicians-and-political-manipulation-on-social-media/Google Scholar
  21. 21.
    Zhdanova, M., Orlova, D.: Ukraine: external threats and internal challenges. In: Computational Propaganda: Political Parties, Politicians, and Political Manipulation on Social Media (2019). https://www.oii.ox.ac.uk/research/books/computational-propaganda-political-parties-politicians-and-political-manipulation-on-social-media/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Guest Researcher at NISTMarylandUSA

Personalised recommendations