Gene Expression Analysis Using Clustering Methods: Comparison Analysis

  • K. SathishkumarEmail author
  • E. Balamurugan
  • Jackson Akpojoro
  • M. Ramalingam
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 39)


A microarray measures the articulation dimensions of thousands of qualities. Meanwhile, Grouping examines microarray quality articulation information. In this paper, have executed a biclustering calculation to distinguish subgroups of information which shows corresponded conduct under explicit test conditions. During the time spent for discovering bi-clusters, Fuzzy K-implies grouping is utilized to bunch the qualities and tests with most extreme enrolment work. Both dimensionality and lessening the quality shaving are finished utilizing LFDA and quality sifting with the capacity separately. From the outcomes it presumes that the proposed work performs better when contrasted with other existing bunching calculations, for example, FCM, FPCM and EMFPCM.


Clustering Fuzzy K means Classification Cancer data LFDA 


  1. 1.
    Liu, J., Yang, J., Wang, W.: Bi clustering in gene expression data by tendency. In: Null, pp. 182–193 (2004)Google Scholar
  2. 2.
    Gerstein, M., Chang, J., Basri, R., Kluger, Y.: Spectral bi clustering of microarray data: co clustering genes and conditions. J. Genome Res. 13(4), 703–716 (2003)CrossRefGoogle Scholar
  3. 3.
    Yang, J., Wang, W., Haixun, W., Yu, P.: Enhanced bi clustering on expression data. In: 3rd IEEE Conference on Bioinformatics and Bioengineering, pp. 321–327 (2003)Google Scholar
  4. 4.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(2003), 1373–1396 (2003)CrossRefGoogle Scholar
  5. 5.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Inc., Boston (1990)zbMATHGoogle Scholar
  6. 6.
    He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)Google Scholar
  7. 7.
    Govaert, G., Nadif, M.: Block clustering with bernoulli mixture models: comparison of different approaches. Comput. Stat. Data Anal. 52(6), 3233–3245 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balamurugan, R., Natarajan, A.M., Premalatha, K.: Stellar-mass black hole optimization for biclustering microarray gene expression data. Appl. Artif. Intell. 29(4), 353–381 (2015)CrossRefGoogle Scholar
  9. 9.
    Govaert, G., Nadif, M.: Co-Clustering: Models, Algorithms and Applications. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  10. 10.
    Balamurugan, R., Natarajan, A.M., Premalatha, K.: A modified harmony search method for biclustering microarray gene expression data. Int. J. Data Mining Bioinform. 16(4), 269–289 (2016)CrossRefGoogle Scholar
  11. 11.
    Van Mechelen, I., Bock, H.H., De Boeck, P.: Two-mode clustering methods: a structured overview. Stat. Methods Med. Res. 13(5), 363–394 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Graph500 benchmark specification (supercomputer performance evaluation). (2010)Google Scholar
  13. 13.
    Sathishkumar, K., Balamurugan, E., Narendran, P.: An efficient artificial bee colony and fuzzy C means based co-regulated bi clustering from gene expression data. In: Mining Intelligence and Knowledge Exploration, pp. 120–129 (2013)CrossRefGoogle Scholar
  14. 14.
    Shamir, R., Sharan, R., Tanay, A.: Discovering statistically significant bi-clusters in gene expression data. Bioinformatics 19(1), 136–144 (2002)Google Scholar
  15. 15.
    Wang, H., Wang, W., Haixun, W., Yu, P.: Clustering by pattern similarity in large data sets. In: ACM SIGMOD International Conference on Management of Data, pp. 394–405 (2002)Google Scholar
  16. 16.
    Madeira, S.C., Oliveira, A.L.: Bi clustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1(1), 24–45 (2004)CrossRefGoogle Scholar
  17. 17.
    Sathishkumar, K., Thiagarasu, V., Ramalingam, M.: Gene expression analysis using fuzzy k-means clustering. Int. J. Adv. Innov. Res. (IJAIR) 5(3), 173–177 (2016). ISSN 2278-7844Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • K. Sathishkumar
    • 1
    Email author
  • E. Balamurugan
    • 1
  • Jackson Akpojoro
    • 1
  • M. Ramalingam
    • 2
  1. 1.University of Africa, Toru-OruaBayelsaNigeria
  2. 2.Gobi Arts and Science CollegeGobiIndia

Personalised recommendations