Enhanced Multipath Communication Procedure for Speed Transmission of Video Streams

  • V. AsanambigaiEmail author
  • S. Suganthi Devi
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 39)


Finding Alternate path communication is the solution for arbitrary video communication to build the data transfer capacity of the organization and increment the video stream. On the other hand, arbitrary multipath transmission strategies are not proper for conversational video administration conveyance because of the high measure of copied packets that origins the interruption in communication. The proposed methodology, communication procedure is utilized to guarantee the diminished measure of interruption with the little packet crash. Packet loss is the principle issue of communication methodology. An Enhanced Multipath Communication Procedure (EMC) is proposed to improve the execution of communication. EMC investigates and assesses the delay and data transfer capacity of each packet. EMC will contrast for different models of packet communication failure. The Experimental outcomes demonstrate that EMC is an effective method to build the Quality of Service for the communication of traditional video.


Communication Packet interruption Packet failure Multipath 


  1. 1.
    Cisco Visual Networking Index: Global mobile data traffic forecast update. 2015–2020 white paper, p. 1 (2016)Google Scholar
  2. 2.
    Robinson, Y.H., Julie, E.G.: SMR: a synchronized multipath rebroadcasting mechanism for improving the quality of conversational video service. Wirel. Pers. Commun. 1–25 (2018)Google Scholar
  3. 3.
    Thiyagarajan, V.S., Ayyasamy, A.: Privacy preserving over big data through VSSFA and MapReduce framework in cloud environment. Wirel. Pers. Commun. 97(4), 6239–6263 (2017)CrossRefGoogle Scholar
  4. 4.
    Iyengar, J., Raiciu, C., Barre, S., Handley, M.J., Ford, A.: Architectural guidelines for multipath TCP development. RFC6182 (2011).
  5. 5.
    Stewart, R.: Stream control transmission protocol. RFC4960 (2007).
  6. 6.
    Robinson, Y.H., Julie, E.G., Saravanan, K., Kumar, R., Son, L.H.: FD-AOMDV: fault-tolerant disjoint ad-hoc on-demand multipath distance vector routing algorithm in mobile ad-hoc networks. J. Ambient Intell. Hum. Comput. 1–18 (2018)Google Scholar
  7. 7.
    Ayyasamy, A., Venkatachalapathy, K.: Context aware adaptive fuzzy based QoS routing scheme for streaming services over MANETs. Wirel. Netw. 21(2), 421–430 (2015)CrossRefGoogle Scholar
  8. 8.
    Thornberry, K.: Separate video file for I-frame and non-I-frame data to improve disk performance in trick play. US Patent 8,855,466.5 (2014)Google Scholar
  9. 9.
    Robinson, Y.H., Balaji, S., Julie, E.G.: Design of a buffer enabled ad hoc on-demand multipath distance vector routing protocol for improving throughput in mobile ad hoc networks. Wirel. Pers. Commun. 1–26 (2018)Google Scholar
  10. 10.
    Zhang, W., Lei, W., Liu, S., Li, G.: A general framework of multipath transport system based on application-level relay. Comput. Commun. 51, 70–80 (2014)CrossRefGoogle Scholar
  11. 11.
    Maxemchuk, N.F.: Dispersity routing in high-speed networks. Comput. Netw. ISDN Syst. 25(6), 645–661 (1993)CrossRefGoogle Scholar
  12. 12.
    Robinson, Y., Rajaram, M.: Energy-aware multipath routing scheme based on particle swarm optimization in mobile ad hoc networks. Sci. World J. 2015, 1–9 (2015)CrossRefGoogle Scholar
  13. 13.
    Huang, C.M., Lin, M.S.: Fast retransmission for concurrent multipath transfer (CMT) over vehicular networks. IEEE Commun. Lett. 15(4), 386–388 (2011)CrossRefGoogle Scholar
  14. 14.
    Gurumoorthi, E., Ayyasamy, A.: Wirel. Pers. Commun. (2019). Scholar
  15. 15.
    Kwon, O.C., Go, Y., Park, Y., Song, H.: MPMTP: multipath multimedia transport protocol using systematic raptor codes over wireless networks. IEEE Trans. Mob. Comput. 14(9), 1903–1916 (2015). Scholar
  16. 16.
    Wu, J., Cheng, B., Yuen, C., Shang, Y., Chen, J.: Distortion-aware concurrent mul- tipath transfer for mobile video streaming in heterogeneous wireless net- works. IEEE Trans. Mob. Comput. 14(4), 688–701 (2015). Scholar
  17. 17.
    Robinson, Y.H., Julie, E.G., Balaji, S., Ayyasamy, A.: Energy aware clustering scheme in wireless sensor network using neuro-fuzzy approach. Wirel. Pers. Commun. 95, 703–721 (2016). Scholar
  18. 18.
    Xu, C., Liu, T., Guan, J., Zhang, H., Muntean, G.-M.: CMT-QA: quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks. IEEE Trans. Mob. Comput. 12(11), 2193–2205 (2013). Scholar
  19. 19.
    Chebrolu, K., Rao, R.R.: Bandwidth aggregation for real-time applications in het- erogeneous wireless networks. IEEE Trans. Mob. Comput. 5(4), 388 (2006)CrossRefGoogle Scholar
  20. 20.
    Ahsan, S., Eggert, L., Singh, V., Karkkainen, T., Ott, J.: Multipath RTP (MPRTP), Internet-Draft draft-ietf-avtcore-mprtp-03 (2016).
  21. 21.
    Hwang, Y., Obele, B., Lim, H.: Multipath transport protocol for heterogeneous multi-homing networks. In: Proceedings of ACM CoNEXT Student Workshop, p. 5 (2010)Google Scholar
  22. 22.
    Sharma, V., Kalyanaraman, S., Kar, K., Ramakrishnan, K., Subramanian, V.: MPLOT: a transport protocol exploiting multipath diversity using erasure codes. In: Proceedings of 27th IEEE INFOCOM, pp. 121–125 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer EngineeringGovernment Polytechnic CollegePerambalurIndia
  2. 2.Department of Computer EngineeringSrinivasa Suubbaraya Polytechnic CollegeNagapattinamIndia

Personalised recommendations