Migration Threshold Tuning in the Deterministic Dendritic Cell Algorithm

  • Julie GreensmithEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11934)


In this paper we explore the sensitivity of the migration threshold parameter in the Deterministic Dendritic Cell Algorithm (dDCA), one of the four main types of Artificial Immune System. This is with a view to the future construction of a DCA augmented with Deep Learning. Learning mechanisms are absent in the original DCA although tuneable parameters are identified which have the potential to be learned over time. Proposed in this paper is the necessary first step towards placing the dDCA within the context of Deep Learning by understanding the maximum migration threshold parameter. Tuning the maximum migration threshold determines the results of the signal processing within the algorithm, and here we explore a range of values. We use the previously explored Ping Scan Dataset to evaluate the influence of this key parameter. Results indicate a close relationship between the maximum migration threshold and the signal values of given datasets. We propose in future to ascertain an optimisation function which would learn the maximum migration threshold during run time. This work represents a necessary step towards producing a DCA which automatically interfaces with any given anomaly detection dataset.


Artificial immune systems Dendritic cell algorithm Parameter tuning 


  1. 1.
    de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002)zbMATHGoogle Scholar
  2. 2.
    Chelly, Z., Elouedi, Z.: A survey of the dendritic cell algorithm. Knowl. Inf. Syst. 48(3), 505–535 (2016). Scholar
  3. 3.
    Elisa, N., Yang, L., Naik, N.: Dendritic cell algorithm with optimised parameters using genetic algorithm. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8 (2018).
  4. 4.
    Elisa, N., Yang, L., Qu, Y., Chao, F.: A revised dendritic cell algorithm using k-means clustering. In: 20th IEEE International Conference on High Performance Computing and Communications; 16th IEEE International Conference on Smart City; 4th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, 28–30 June 2018, pp. 1547–1554 (2018)Google Scholar
  5. 5.
    Greensmith, J.: The Dendritic cell algorithm. Ph.D. thesis, School of Computer Science, University Of Nottingham (2007)Google Scholar
  6. 6.
    Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005). Scholar
  7. 7.
    Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection with the DCA. Inf. Fusion 11(1), 21–34 (2010)CrossRefGoogle Scholar
  8. 8.
    Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006). Scholar
  9. 9.
    Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp. 664–671 (2006)Google Scholar
  10. 10.
    Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008). Scholar
  11. 11.
    Greensmith, J., Gale, M.B.: IEEE: the functional dendritic cell algorithm: a formal specification with Haskell. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia, San Sebastián, Spain, 5–8 June 2017, pp. 1787–1794. IEEE (2017)Google Scholar
  12. 12.
    Gu, F., Feyereisl, J., Oates, R., Reps, J., Greensmith, J., Aickelin, U.: Quiet in class: classification, noise and the dendritic cell algorithm. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 173–186. Springer, Heidelberg (2011). Scholar
  13. 13.
    Gu, F., Greensmith, J., Aickelin, U.: Theoretical formulation and analysis of the deterministic dendritic cell algorithm. Biosystems 111(2), 127–135 (2013)CrossRefGoogle Scholar
  14. 14.
    Igbe, O., Darwish, I., Saadawi, T.: Deterministic dendritic cell algorithm application to smart grid cyber-attack detection. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, New York (2017)Google Scholar
  15. 15.
    Kim, J., Bentley, P., Wallenta, C., Ahmed, M., Hailes, S.: Danger is ubiquitous: detecting malicious activities in sensor networks using the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 390–403. Springer, Heidelberg (2006). Scholar
  16. 16.
    Lau, H.Y.K., Lee, N.M.Y.: Danger theory or trained neural network - a comparative study for behavioural detection. In: Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December, pp. 867-874 (2018).
  17. 17.
    Matzinger, P.: Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994)CrossRefGoogle Scholar
  18. 18.
    Oates, R., Kendall, G., Garibaldi, J.M.: Frequency analysis for dendritic cell population tuning: Decimating the dendritic cell. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (2008)CrossRefGoogle Scholar
  19. 19.
    Sarafijanović, S., Le Boudec, J.-Y.: An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal, and memory detectors. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 342–356. Springer, Heidelberg (2004). Scholar
  20. 20.
    Stibor, T., Oates, R., Kendall, G., Garibaldi, J.M.: Geometrical insights into the dendritic cell algorithm. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1275–1282. ACM (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations