Migration Threshold Tuning in the Deterministic Dendritic Cell Algorithm
Abstract
In this paper we explore the sensitivity of the migration threshold parameter in the Deterministic Dendritic Cell Algorithm (dDCA), one of the four main types of Artificial Immune System. This is with a view to the future construction of a DCA augmented with Deep Learning. Learning mechanisms are absent in the original DCA although tuneable parameters are identified which have the potential to be learned over time. Proposed in this paper is the necessary first step towards placing the dDCA within the context of Deep Learning by understanding the maximum migration threshold parameter. Tuning the maximum migration threshold determines the results of the signal processing within the algorithm, and here we explore a range of values. We use the previously explored Ping Scan Dataset to evaluate the influence of this key parameter. Results indicate a close relationship between the maximum migration threshold and the signal values of given datasets. We propose in future to ascertain an optimisation function which would learn the maximum migration threshold during run time. This work represents a necessary step towards producing a DCA which automatically interfaces with any given anomaly detection dataset.
Keywords
Artificial immune systems Dendritic cell algorithm Parameter tuningReferences
- 1.de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002)zbMATHGoogle Scholar
- 2.Chelly, Z., Elouedi, Z.: A survey of the dendritic cell algorithm. Knowl. Inf. Syst. 48(3), 505–535 (2016). https://doi.org/10.1007/s10115-015-0891-yCrossRefGoogle Scholar
- 3.Elisa, N., Yang, L., Naik, N.: Dendritic cell algorithm with optimised parameters using genetic algorithm. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8 (2018). https://doi.org/10.1109/CEC.2018.8477932
- 4.Elisa, N., Yang, L., Qu, Y., Chao, F.: A revised dendritic cell algorithm using k-means clustering. In: 20th IEEE International Conference on High Performance Computing and Communications; 16th IEEE International Conference on Smart City; 4th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, 28–30 June 2018, pp. 1547–1554 (2018)Google Scholar
- 5.Greensmith, J.: The Dendritic cell algorithm. Ph.D. thesis, School of Computer Science, University Of Nottingham (2007)Google Scholar
- 6.Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005). https://doi.org/10.1007/11536444_12CrossRefzbMATHGoogle Scholar
- 7.Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection with the DCA. Inf. Fusion 11(1), 21–34 (2010)CrossRefGoogle Scholar
- 8.Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11823940_31CrossRefGoogle Scholar
- 9.Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp. 664–671 (2006)Google Scholar
- 10.Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85072-4_26CrossRefGoogle Scholar
- 11.Greensmith, J., Gale, M.B.: IEEE: the functional dendritic cell algorithm: a formal specification with Haskell. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia, San Sebastián, Spain, 5–8 June 2017, pp. 1787–1794. IEEE (2017)Google Scholar
- 12.Gu, F., Feyereisl, J., Oates, R., Reps, J., Greensmith, J., Aickelin, U.: Quiet in class: classification, noise and the dendritic cell algorithm. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 173–186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22371-6_17CrossRefGoogle Scholar
- 13.Gu, F., Greensmith, J., Aickelin, U.: Theoretical formulation and analysis of the deterministic dendritic cell algorithm. Biosystems 111(2), 127–135 (2013)CrossRefGoogle Scholar
- 14.Igbe, O., Darwish, I., Saadawi, T.: Deterministic dendritic cell algorithm application to smart grid cyber-attack detection. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, New York (2017)Google Scholar
- 15.Kim, J., Bentley, P., Wallenta, C., Ahmed, M., Hailes, S.: Danger is ubiquitous: detecting malicious activities in sensor networks using the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 390–403. Springer, Heidelberg (2006). https://doi.org/10.1007/11823940_30CrossRefGoogle Scholar
- 16.Lau, H.Y.K., Lee, N.M.Y.: Danger theory or trained neural network - a comparative study for behavioural detection. In: Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December, pp. 867-874 (2018). https://doi.org/10.1109/SCIS-ISIS.2018.00143
- 17.Matzinger, P.: Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994)CrossRefGoogle Scholar
- 18.Oates, R., Kendall, G., Garibaldi, J.M.: Frequency analysis for dendritic cell population tuning: Decimating the dendritic cell. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (2008)CrossRefGoogle Scholar
- 19.Sarafijanović, S., Le Boudec, J.-Y.: An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal, and memory detectors. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 342–356. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30220-9_28CrossRefGoogle Scholar
- 20.Stibor, T., Oates, R., Kendall, G., Garibaldi, J.M.: Geometrical insights into the dendritic cell algorithm. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1275–1282. ACM (2009)Google Scholar