Advertisement

Non-abelian Gauge-Invariant Cellular Automata

  • Pablo Arrighi
  • Giuseppe Di Molfetta
  • Nathanaël EonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11934)

Abstract

Gauge-invariance is a mathematical concept that has profound implications in Physics—as it provides the justification of the fundamental interactions. It was recently adapted to the Cellular Automaton (CA) framework, in a restricted case. In this paper, this treatment is generalized to non-abelian gauge-invariance, including the notions of gauge-equivalent theories and gauge-invariants of configurations.

Keywords

Cellular automata Gauge-invariance Quantum information 

References

  1. 1.
    Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arrighi, P., Bény, C., Farrelly, T.: A quantum cellular automaton for one-dimensional QED. arXiv preprint arXiv:1903.07007 (2019)
  3. 3.
    Arrighi, P., Di Molfetta, G., Eon, N.: A gauge-invariant reversible cellular automaton. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS, vol. 10875, pp. 1–12. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92675-9_1CrossRefzbMATHGoogle Scholar
  4. 4.
    Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, Princeton (2013)CrossRefGoogle Scholar
  7. 7.
    Salo, V., Törmä, I.: Color blind cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 139–154. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40867-0_10CrossRefzbMATHGoogle Scholar
  8. 8.
    Toffoli, T., Margolus, N.: Cellular Automata Machine - A new Environment for Modelling. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  9. 9.
    Toom, A.: Cellular automata with errors: problems for students of probability. In: Topics in Contemporary Probability and Its Applications, pp. 117–157 (1995)Google Scholar
  10. 10.
    Toom, A., Vasilyev, N., Stavskaya, O., Mityushin, L., Kurdyumov, G., Pirogov, S.: Discrete local Markov systems. Stochastic cellular systems: ergodicity, memory, morphogenesis. In: Dobrushin, R., Kryukov, V., Toom, A. (eds.) Nonlinear Science: Theory and Applications (1990)Google Scholar
  11. 11.
    Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, Heidelberg (2004)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix-Marseille Univ, Université de Toulon, CNRS, LISMarseilleFrance
  2. 2.IXXILyonFrance
  3. 3.Departamento de Física Teórica and IFICUniversidad de Valencia-CSICBurjassotSpain
  4. 4.École CentraleMarseilleFrance

Personalised recommendations