Advertisement

The Impact of Bacterial Biofilms in Transfusion Medicine

  • Sandra Ramirez-ArcosEmail author
Chapter
  • 81 Downloads

Abstract

Blood transfusion is a life-saving practice that started in the early 1800s. Blood components used for transfusion therapy for bleeding patients include platelet concentrates (PCs), red cell concentrates, and plasma. PCs are highly susceptible to bacterial contamination, due to their storage conditions in a nutrient-rich environment at ambient temperature, posing the most significant post-transfusion infectious risk. The predominant bacteria present in PCs are commensal inhabitants of the human skin such as Staphylococcus epidermidis (S. epidermidis) which are likely introduced at the time of blood collection. S. epidermidis and other common PC contaminants form surface-attached communities of matrix-embedded cells, known as biofilms, during PC storage. Biofilms are formed by bacteria adhering to either platelet cells or to the plastic of PC containers. Bacterial adhesion to PC containers is enhanced by the presence of plasma factors and can be reduced by physical or chemical modification of the PC storage bag. Biofilm formation can also be reduced by preventing platelet–bacteria interactions or by reducing the plasma content in PCs. The PC storage environment promotes biofilm formation by coagulase-negative staphylococci isolates traditionally considered to be biofilm negative, resulting in increased pathogenicity and missed detection during PC screening using automated culture systems. Recent studies have shown that the PC storage environment induces structural changes in the bacterial cell wall and biofilm matrix of S. epidermidis that could be responsible for resistance to immune clearance and persistent growth in this environment. Further studies are needed to deepen our understanding of the PC storage parameters responsible for triggering bacterial biofilm formation and to develop new strategies to improve PC safety for the benefit of transfusion patients.

Keywords

Antimicrobial peptide Bacterial adhesion Bacterial contamination Biofilm Biofilm matrix Bloodborne bacteria Cell wall Coagulase-negative staphylococci Platelet–bacteria interaction Septic transfusions Staphylococcus epidermidis 

References

  1. 1.
    Greenwalt TJ (1997) The short history of transfusion medicine. Transfusion 37:550–563CrossRefGoogle Scholar
  2. 2.
    Lewisohn R (1924) The citrate method of blood transfusion after ten years. Boston Med Surg J 190:733CrossRefGoogle Scholar
  3. 3.
    Weil R (1915) Sodium citrate in the transfusion of blood. JAMA 64:425CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Ramirez-Arcos S, Marks DC, Acker JP, Sheffield WP (2016) Quality and safety of blood products (Editorial). J Blood Transfus 2016:2482157CrossRefGoogle Scholar
  6. 6.
    Ramirez-Arcos S, Goldman M (2012) Bacterial contamination. In: Popovsky M (ed) Transfusion reactions, 4th edn. American Association of Blood Banks Press, Bethesda, MD, pp 53–181Google Scholar
  7. 7.
    Taha M, Kalab M, Yi QL, Maurer E, Jenkins C, Schubert P, Ramirez-Arcos S (2016) Bacterial survival and distribution during buffy coat platelet production. Vox Sang 111:333–340CrossRefGoogle Scholar
  8. 8.
    Brandwein M, Steinberg D, Meshner S (2016) Microbial biofilms and the human skin microbiome. NPJ Biofilms Microbio 2:3CrossRefGoogle Scholar
  9. 9.
    Taha M, Kala M, Yi Q, Landry C, Greco-Stewart V, Braassinga A, Sifri CD, Ramirez-Arcos S (2014) Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion 54:2974–2982CrossRefGoogle Scholar
  10. 10.
    Greco C, Mastronardi C, Pagotto F, Mack D, Ramirez-Arcos S (2008) Assessment of biofilm-forming ability of coagulase-negative staphylococci isolated from contaminated platelet preparations in Canada. Transfusion 48(5):969–977PubMedGoogle Scholar
  11. 11.
    Martini R, Hörner R, Rampelotto RF, Garzon LR, Nunes MS, Teixeira MD, Graichen DÂ (2016) Investigation of biofilm formation in coagulase-negative staphylococci isolated from platelet concentrate bags. Rev Inst Med Trop Sao Paulo 58:1CrossRefGoogle Scholar
  12. 12.
    Parment PA, Gabriel M, Bruse GW, Stegali S, Ahearn DG (1993) Adherence of Serratia marcescens, Serratia liquefaciens, Pseudomonas aeruginosa and Staphylococcus epidermidis to blood transfusion bags (CPD-SAGMAN sets). Scand J Infecti Dis 26:721–724CrossRefGoogle Scholar
  13. 13.
    Greco C, Martincic I, Gusinjac A, Kalab M, Yang AF, Ramirez-Arcos S (2007) Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions. Transfusion 47:1143–1153CrossRefGoogle Scholar
  14. 14.
    Motoyama Y, Yamaguchi N, Matsumoto M, Ichijo T, Nagumo H, Kagami N, Tani Y, Satake M, Nasu M (2009) Staphylococcus epidermidis forms floating micro-colonies in platelet concentrates at the early stage of contamination. J Health Sci 55:726–731CrossRefGoogle Scholar
  15. 15.
    Ali H, Greco-Stewart VS, Jacobs MR, Yomtovian RA, Rood IG, de Korte D, Ramírez-Arcos SM (2014) Characterization of the growth dynamics and biofilm formation of Staphylococcus epidermidis strains isolated from contaminated platelet units. J Med Microbiol 63:884–891CrossRefGoogle Scholar
  16. 16.
    Greco-Stewart VS, Ali H, Kumaran D, Kalab M, Rood IG, De Korte D, Ramirez-Arcos S (2013) Biofilm formation by Staphylococcus capitis strains isolated from contaminated platelet concentrates. J Med Microbiol 62:1051–1059CrossRefGoogle Scholar
  17. 17.
    Hodgson SD, Greco-Stewart V, Jimenez CS, Sifri CD, Brassinga AK, Ramirez-Arcos S (2014) Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. Transfusion 54:461–470PubMedGoogle Scholar
  18. 18.
    Greco-Stewart VS, Brown EE, Parr C, Kalab M, Jacobs MR, Yomtovian RA, Ramirez-Arcos SM (2012) Serratia marcescens strains implicated in adverse transfusion reactions form biofilms in platelet concentrates and demonstrate reduced detection by automated culture. Vox Sang 102:212–220CrossRefGoogle Scholar
  19. 19.
    Loza-Correa M, Kou Y, Taha M, Kalab M, Ronholm J, Schlievert PM, Cahill MP, Skeate R, Cserti-Gazdewich C, Ramirez-Arcos S (2017a) Septic transfusion case caused by a platelet pool with visible clotting due to contamination with Staphylococcus aureus. Transfusion 57:1299–1303CrossRefGoogle Scholar
  20. 20.
    Kou Y, Pagotto F, Hannach B, Ramirez-Arcos S (2015) Fatal false-negative transfusion infection involving a buffy coat platelet pool contaminated with biofilm-positive Staphylococcus epidermidis: a case report. Transfusion 55:2384–2389CrossRefGoogle Scholar
  21. 21.
    Loza-Correa M, Kalab M, Yi QL, Eltringham-Smith LJ, Sheffield WP, Ramirez-Arcos S (2017b) Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma. Vox Sang 112:401–407CrossRefGoogle Scholar
  22. 22.
    Hadjesfandiari N, Schubert P, Fallah Toosi S, Chen Z, Culibrk B, Ramirez-Arcos S, Devine DV, Brooks DE (2016) Effect of texture of platelet bags on bacterial and platelet adhesion. Transfusion 56:2808–2818CrossRefGoogle Scholar
  23. 23.
    Wilson-Nieuwenhuis JST, Dempsey-Hibbert N, Liauw CM, Whitehead KA (2017) Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis. Colloids Surf B Biointerfaces 160:126–135CrossRefGoogle Scholar
  24. 24.
    Hadjesfandiari N, Weinhart M, Kizhakkedathu JN, Haag R, Brooks DE (2018) Development of antifouling and bactericidal coatings for platelet storage bags using dopamine chemistry. Adv Healthc Mater 7(5).  https://doi.org/10.1002/adhm.201700839
  25. 25.
    Greco CA, Zhang JG, Kalab M, Yi QL, Ramirez-Arcos SM, Gyongyossy-Issa MI (2010) Effect of platelet additive solution on bacterial dynamics and their influence on platelet quality in stored platelet concentrates. Transfusion 50:2344–2352CrossRefGoogle Scholar
  26. 26.
    Fitzgerald JR, Timothy J, Foster TJ, Cox D (2006) The interaction of bacterial pathogens with platelets. Nat Rev 4:445–457Google Scholar
  27. 27.
    Siboo IR, Cheung AL, Bayer AS, Sullam PM (2001) Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect Immun 69:3120–3127CrossRefGoogle Scholar
  28. 28.
    Brennan MP, Loughman A, Devocelle M, Arasu S, Chubb AJ, Foster TJ, Cox D (2009) Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 7:1364–1372CrossRefGoogle Scholar
  29. 29.
    Greco CA, Maurer-Spurej E, Scott MD, Kalab M, Nakane N, Ramírez-Arcos SM (2011) PEGylation prevents bacteria-induced platelet activation and biofilm formation in platelet concentrates. Vox Sang 100:336–339CrossRefGoogle Scholar
  30. 30.
    Alabdullatif M, Atreya CD, Ramirez-Arcos S (2018) Antimicrobial peptides: an effective approach to prevent bacterial biofilm formation in platelet concentrates. Transfusion 58:2013–2021CrossRefGoogle Scholar
  31. 31.
    Joo H-S, C-l F, Otto M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc B 371:20150292CrossRefGoogle Scholar
  32. 32.
    Loza-Correa M, Ayala JA, Perelman I, Hubbard K, Kalab M, Yi QL, Taha M, de Pedro MA, Ramirez-Arcos S (2019) The peptidoglycan and biofilm matrix of Staphylococcus epidermidis undergo structural changes when exposed to human platelets. PLoS One 14:e0211132CrossRefGoogle Scholar
  33. 33.
    Abela MA, Fenning S, Maguire KA, Morris KG (2018) Bacterial contamination of platelet components not detected by BacT/ALERT. Transf Med 28:65–70CrossRefGoogle Scholar
  34. 34.
    Brailsford SR, Tossell J, Morrison R, McDonald CP, Pitt TL (2018) Failure of bacterial screening to detect Staphylococcus aureus: the English experience of donor follow-up. Vox Sang.  https://doi.org/10.1111/vox.12670
  35. 35.
    Haass KA, Sapian MRP, Savinkina A, Kuehnert MJ, Basavaraju SV (2019) Transfusion-transmitted infections reported to the National Healthcare Safety Network Hemovigilance Module. Transf Med Rev 33(2):84–91.  https://doi.org/10.1016/j.tmrv.2019.01.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Innovation, Canadian Blood ServicesOttawaCanada
  2. 2.Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada

Personalised recommendations