Device-Related Infections

  • Paul Renick
  • Liping TangEmail author


Device-related infection is responsible for a quarter of all health care-associated infections and can even compromise device function. These infections are caused by the colonization of microorganisms during the implantation processes. Unfortunately, the treatment option for device-related infection is limited. To make the situation worse, some of these organisms form biofilms that cover the device surface notably weakening the effectiveness of antimicrobial treatments. This chapter summarizes our current understanding of the pathogenesis of device-related infection. It also discusses our knowledge of the processes governing the formation, regulation, and resistance of biofilms. Finally, we introduce several new methods developed for diagnosing and treating biofilm infections on medical devices.


Medical device Infection Extracellular polymeric substances Biofilm Protein Biomaterials Fibrinogen Implants Hydrophobic Quorum sensing Surface-active compounds Diagnosis 


  1. 1.
    Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334CrossRefGoogle Scholar
  4. 4.
    Akgün D, Müller M, Perka C, Winkler T (2018) An often-unrecognized entity as a cause of recurrent infection after successfully treated two-stage exchange arthroplasty: hematogenous infection. Arch Orthop Trauma Surg 138:1199–1206CrossRefGoogle Scholar
  5. 5.
    Dennison T, Alentorn-Geli E, Assenmacher AT, Sperling JW, Sánchez-Sotelo J, Cofield RH (2017) Management of acute or late hematogenous infection after shoulder arthroplasty with irrigation, débridement, and component retention. J Shoulder Elbow Surg 26:73–78CrossRefGoogle Scholar
  6. 6.
    Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122CrossRefGoogle Scholar
  8. 8.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890CrossRefGoogle Scholar
  9. 9.
    Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633CrossRefGoogle Scholar
  10. 10.
    H-c F, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575CrossRefGoogle Scholar
  11. 11.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95CrossRefGoogle Scholar
  12. 12.
    Stewart P (2018) How bacteria in biofilms withstand antibiotics. Montana Biofilm Science and Technology Meeting, 2018Google Scholar
  13. 13.
    Stewart PS, Franklin MJ, Williamson KS, Folsom JP, Boegli L, James GA (2015) Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 59:3838–3847CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  16. 16.
    Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538CrossRefGoogle Scholar
  19. 19.
    Liping T, Paul T, Wenjing H (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8:270–280CrossRefGoogle Scholar
  20. 20.
    Tang L, Hu W (2005) Molecular determinants of biocompatibility. Expert Rev Med Devices 2:493–500CrossRefGoogle Scholar
  21. 21.
    Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166CrossRefGoogle Scholar
  22. 22.
    Arciola CR, Bustanji Y, Conti M, Campoccia D, Baldassarri L, Samorı̀ B, Montanaro L (2003) Staphylococcus epidermidis–fibronectin binding and its inhibition by heparin. Biomaterials 24:3013–3019CrossRefGoogle Scholar
  23. 23.
    Patti JM, Allen BL, McGavin MJ, Höök M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617CrossRefGoogle Scholar
  24. 24.
    Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Schumacher-Perdreau F, xe o, Peters G, Waldvogel FA (1988) Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701CrossRefGoogle Scholar
  25. 25.
    Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, Dufrêne YF (2015) Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. MBio 6:e00413–e00415CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Imberty A, Wimmerová M, Mitchell EP, Gilboa-Garber N (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Microbes Infect 6:221–228CrossRefGoogle Scholar
  28. 28.
    Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181:3606–3609CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mack D, Riedewald J, Rohde H, Magnus T, Feucht HH, Elsner HA, Laufs R, Rupp ME (1999) Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect Immun 67:1004–1008CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J, Laufs R (1994) Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun 62:3244–3253CrossRefGoogle Scholar
  31. 31.
    Li H, Xu L, Wang J, Wen Y, Vuong C, Otto M, Gao Q (2005) Conversion of Staphylococcus epidermidis strains from commensal to invasive by expression of the ica locus encoding production of biofilm exopolysaccharide. Infect Immun 73:3188–3191CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Leung JW, Liu YL, Desta T, Libby E, Inciardi JF, Lam K (1998) Is there a synergistic effect between mixed bacterial infection in biofilm formation on biliary stents? Gastrointest Endosc 48:250–257CrossRefGoogle Scholar
  33. 33.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kreft J-U (2004) Biofilms promote altruism. Microbiology 150:2751–2760CrossRefGoogle Scholar
  35. 35.
    Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hawver LA, Jung SA, Ng W-L, Shen A (2016) Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev 40:738–752CrossRefGoogle Scholar
  37. 37.
    de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165CrossRefGoogle Scholar
  39. 39.
    Le KY, Otto M (2015) Quorum-sensing regulation in staphylococci—an overview. Front Microbiol 6:1174CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Juhas M, Eberl L, Tümmler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471CrossRefGoogle Scholar
  42. 42.
    Sircili MP, Walters M, Trabulsi LR, Sperandio V (2004) Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect Immun 72:2329–2337CrossRefGoogle Scholar
  43. 43.
    Armbruster CE, Hong W, Pang B, Weimer KED, Juneau RA, Turner J, Swords WE (2010) Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio 1:e00102–e00110CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306–a010306CrossRefGoogle Scholar
  45. 45.
    Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S (2005) Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci U S A 102:16819–16824CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hogan S, Stevens NT, Humphreys H, O’Gara JP, O;Neill E (2015) Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections. Curr Pharm Des 21:100CrossRefGoogle Scholar
  47. 47.
    Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Roberts ME, Stewart PS (2004) Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob Agents Chemother 48:48–52CrossRefGoogle Scholar
  49. 49.
    English BK (2014) Limitations of beta-lactam therapy for infections caused by susceptible Gram-positive bacteria. J Infect 69:S5–S9CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hausler WJ (1996) Antibiotics in laboratory medicine, vol 29, 4th edn. Wilkins & Wilkins, Baltimore, MDGoogle Scholar
  51. 51.
    Stevens DL, Gibbons AE, Bergstrom R, Winn V (1988) The Eagle Effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of Streptococcal myositis. J Infect Dis 158:23–28CrossRefGoogle Scholar
  52. 52.
    Savage VJ, Chopra I, O’Neill AJ (2013) Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 57:1968–1970Google Scholar
  53. 53.
    Curry SR, Marsh JW, Shutt KA, Muto CA, O’Leary MM, Saul MI, Pasculle AW, Harrison LH (2009) High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis 48:425–429CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Morosini M-I, Baquero M-R, Sánchez-Romero JM, Negri M-C, Galán J-C, Campo RD, Pérez-Díaz JC, Baquero F (2003) Frequency of mutation to rifampin resistance in Streptococcus pneumoniae clinical strains: hexA and hexB polymorphisms do not account for hypermutation. Antimicrob Agents Chemother 47:2064–2064CrossRefGoogle Scholar
  55. 55.
    O’Neill AJ, Chopra I, Cove JH (2001) Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus aureus. J Antimicrob Chemother 47:647–650Google Scholar
  56. 56.
    Croes S, Beisser PS, Neef C, Bruggeman CA, Stobberingh EE (2010) Unpredictable effects of rifampin as an adjunctive agent in elimination of rifampin-susceptible and -resistant Staphylococcus aureus strains grown in biofilms. Antimicrob Agents Chemother 54:3907–3912CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Floss HG, Yu T-W (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621CrossRefGoogle Scholar
  58. 58.
    Wichelhaus TA, Böddinghaus B, Besier S, Schäfer V, Brade V, Ludwig A (2002) Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrob Agents Chemother 46:3381–3385CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Singh R, Ray P, Das A, Sharma M (2009) Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58:1067–1073CrossRefGoogle Scholar
  60. 60.
    Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79:7116–7121CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wen Y, Behiels E, Devreese B (2014) Toxin–antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249CrossRefGoogle Scholar
  62. 62.
    Bouvresse S, Chiras J, Bricaire F, Bossi P (2006) Pott’s disease occurring after percutaneous vertebroplasty: an unusual illustration of the principle of locus minoris resistentiae. J Infect 53:e251–e253CrossRefGoogle Scholar
  63. 63.
    Chan ED, Po-Marn K, Kevin F, Anthony PD, Iseman MD (2001) Vertebral osteomyelitis due to infection with Nontuberculous mycobacterium species after blunt trauma to the back: 3 examples of the principle of Locus Minoris Resistentiae. Clin Infect Dis 32:1506–1510CrossRefGoogle Scholar
  64. 64.
    Scherr T, Heim C, Morrison J, Kielian T (2014) Hiding in plain sight: interplay between Staphylococcal biofilms and host immunity. Front Immunol 5:37CrossRefGoogle Scholar
  65. 65.
    Prabhakara R, Harro JM, Leid JG, Harris M, Shirtliff ME (2011) Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79:1789CrossRefGoogle Scholar
  66. 66.
    Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339CrossRefGoogle Scholar
  67. 67.
    Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C, Biofilms ESGf, Consulting External Expert Werner Z (2015) ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21:S1–S25CrossRefGoogle Scholar
  68. 68.
    Vasoo S (2018) Improving the diagnosis of orthopedic implant-associated infections: optimizing the use of tools already in the box. J Clin Microbiol 56:e01379–e01318CrossRefGoogle Scholar
  69. 69.
    Xu Y, Larsen LH, Lorenzen J, Hall-Stoodley L, Kikhney J, Moter A, Thomsen TR (2017) Microbiological diagnosis of device-related biofilm infections. APMIS 125:289–303CrossRefGoogle Scholar
  70. 70.
    Parikh MS, Antony S (2015) A comprehensive review of the diagnosis and management of prosthetic joint infections in the absence of positive cultures. J Infect Public Health 9:545–556CrossRefGoogle Scholar
  71. 71.
    Ady J, Fong Y (2014) Imaging for infection: from visualization of inflammation to visualization of microbes. Surg Infect (Larchmt) 15:700–707CrossRefGoogle Scholar
  72. 72.
    Erba PA, Israel O (2014) SPECT/CT in infection and inflammation. Clin Transl Imaging 2:519–535CrossRefGoogle Scholar
  73. 73.
    Granov A, Tiutin L, Schwarz T (2013) Positron Emission Tomography, 1. Aufl., 1st edn. Springer, HeidelbergCrossRefGoogle Scholar
  74. 74.
    Palestro CJ, Love C (2017) Role of nuclear medicine for diagnosing infection of recently implanted lower extremity arthroplasties. Semin Nucl Med 47:630–638CrossRefGoogle Scholar
  75. 75.
    Sellmyer MA, Lee I, Hou C, Weng C-C, Li S, Lieberman BP, Zeng C, Mankoff DA, Mach RH (2017) Bacterial infection imaging with [18F]fluoropropyl-trimethoprim. Proc Natl Acad Sci 114:8372–8377CrossRefGoogle Scholar
  76. 76.
    Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA (2017) Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med 47:286–303CrossRefGoogle Scholar
  77. 77.
    Koglin N, Mueller A, Berndt M, Schmitt-Willich H, Toschi L, Stephens AW, Gekeler V, Friebe M, Dinkelborg LM (2011) Specific PET imaging of xc-transporter activity using a 18F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism. Clin Cancer Res 17:6000–6011CrossRefGoogle Scholar
  78. 78.
    Krasikova RN, Kuznetsova OF, Fedorova OS, Belokon YN, Maleev VI, Mu L, Ametamey S, Schubiger PA, Friebe M, Berndt M, Koglin N, Mueller A, Graham K, Lehmann L, Dinkelborg LM (2011) 4-[18F]Fluoroglutamic Acid (BAY 85-8050), a new amino acid radiotracer for PET imaging of tumors: synthesis and in vitro characterization. J Med Chem 54:406–410CrossRefGoogle Scholar
  79. 79.
    Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41:246–264CrossRefGoogle Scholar
  80. 80.
    Wang L, Zha Z, Qu W, Qiao H, Lieberman BP, Plössl K, Kung HF (2012) Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents. Nucl Med Biol 39:933–943CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shukla AK, Kumar U (2006) Positron emission tomography: an overview. J Med Phys 31:13–21CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Vaquero JJ, Kinahan P (2015) Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng 17:385–414CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ankrah AO, Glaudemans AWJM, Maes A, Van de Wiele C, Dierckx RAJO, Vorster M, Sathekge MM (2018) Tuberculosis. Semin Nucl Med 48:108–130CrossRefGoogle Scholar
  84. 84.
    Kouijzer IJE, Mulders-Manders CM, Bleeker-Rovers CP, Oyen WJG (2018) Fever of unknown origin: the value of FDG-PET/CT. Semin Nucl Med 48:100–107CrossRefGoogle Scholar
  85. 85.
    Neumann KD, Villanueva-Meyer JE, Mutch CA, Flavell RR, Blecha JE, Kwak T, Sriram R, VanBrocklin HF, Rosenberg OS, Ohliger MA, Wilson DM (2017) Imaging active infection in vivo using D-amino acid derived pet radiotracers. Sci Rep 7:7903CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nielsen KM, Kyneb MH, Alstrup AKO, Jensen JJ, Bender D, Schønheyder HC, Afzelius P, Nielsen OL, Jensen SB (2016) 68Ga-labeled phage-display selected peptides as tracers for positron emission tomography imaging of Staphylococcus aureus biofilm-associated infections: selection, radiolabelling and preliminary biological evaluation. Nucl Med Biol 43:593–605CrossRefGoogle Scholar
  87. 87.
    Ordonez AA, Jain SK (2018) Pathogen-specific bacterial imaging in nuclear medicine. Semin Nucl Med 48:182–194CrossRefGoogle Scholar
  88. 88.
    Rice SL, Roney CA, Daumar P, Lewis JS (2011) The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med 41:265–282CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Salmanoglu E, Kim S, Thakur ML (2018) Currently available radiopharmaceuticals for imaging infection and the Holy Grail. Semin Nucl Med 48:86–99CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Weinstein EA, Ordonez AA, DeMarco VP, Murawski AM, Pokkali S, MacDonald EM, Klunk M, Mease RC, Pomper MG, Jain SK (2014) Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med 6:259ra146–259ra146CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Ordonez AA, Weinstein EA, Bambarger LE, Saini V, Chang YS, DeMarco VP, Klunk MH, Urbanowski ME, Moulton KL, Murawski AM, Pokkali S, Kalinda AS, Jain SK (2018) A systematic approach for developing bacteria-specific imaging tracers. J Nucl Med 58:144–150CrossRefGoogle Scholar
  92. 92.
    Livieratos L (2015) Technical pitfalls and limitations of SPECT/CT. Semin Nucl Med 45:530–540CrossRefGoogle Scholar
  93. 93.
    Horger M, Eschmann SM, Pfannenberg C, Storek D, Dammann F, Vonthein R, Claussen CD, Bares R (2003) The value of SPET/CT in chronic osteomyelitis. Eur J Nucl Med Mol Imaging 30:1665–1673CrossRefGoogle Scholar
  94. 94.
    Chaussade H, Uçkay I, Vuagnat A, Druon J, Gras G, Rosset P, Lipsky BA, Bernard L (2017) Antibiotic therapy duration for prosthetic joint infections treated by debridement and implant retention (DAIR): similar long-term remission for 6 weeks as compared to 12 weeks. Int J Infect Dis 63:37–42CrossRefGoogle Scholar
  95. 95.
    Sendi P, Zimmerli W (2012) Antimicrobial treatment concepts for orthopaedic device-related infection. Clin Microbiol Infect 18:1176–1184CrossRefGoogle Scholar
  96. 96.
    Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85CrossRefGoogle Scholar
  97. 97.
    Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE, Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Dickey J, Perrot V (2019) Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One 14:e0209390CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Strempel N, Strehmel J, Overhage J (2015) Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr Pharm Des 21:67CrossRefGoogle Scholar
  101. 101.
    Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395CrossRefGoogle Scholar
  103. 103.
    Li X, Wang Z, Wang G (2015) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093PubMedGoogle Scholar
  104. 104.
    Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Hermsen ED, Sullivan CJ, Rotschafer JC (2003) Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications, vol 17. Elsevier, New York, pp 545–562Google Scholar
  106. 106.
    Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465CrossRefGoogle Scholar
  107. 107.
    Thomas J, Linton S, Corum L, Slone W, Okel T, Percival SL (2012) The affect of pH and bacterial phenotypic state on antibiotic efficacy. Int Wound J 9:428–435CrossRefGoogle Scholar
  108. 108.
    Yang L, Wang K, Li H, Denstedt JD, Cadieux PA (2014) The influence of urinary pH on antibiotic efficacy against bacterial uropathogens. Urology 84:731.e1–731.e7CrossRefGoogle Scholar
  109. 109.
    Baudoux P, Bles N, Lemaire S, Mingeot-Leclercq M-P, Tulkens PM, Van Bambeke F (2007) Combined effect of pH and concentration on the activities of gentamicin and oxacillin against Staphylococcus aureus in pharmacodynamic models of extracellular and intracellular infections. J Antimicrob Chemother 59:246–253CrossRefGoogle Scholar
  110. 110.
    Bryant RE, Mazza JA (1989) Effect of the abscess environment on the antimicrobial activity of ciprofloxacin. Am J Med 87:S23–S27CrossRefGoogle Scholar
  111. 111.
    Kacprzyk L, Rydengård V, Mörgelin M, Davoudi M, Pasupuleti M, Malmsten M, Schmidtchen A (2007) Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta Biomembranes 1768:2667–2680CrossRefGoogle Scholar
  112. 112.
    Xiong M, Bao Y, Xu X, Wang H, Han Z, Wang Z, Liu Y, Huang S, Song Z, Chen J, Peek RM Jr, Yin L, Chen L-F, Cheng J (2017) Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proc Natl Acad Sci U S A 114:12675–12680CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations