Bioinspired Interfaces for the Management of Skin Infections

  • Sandra L. AriasEmail author
  • Joshua Devorkin
  • Ana Civantos
  • Camilo Jaramillo
  • Jean Paul Allain


The percutaneous invasion of microorganisms through damaged skin layers can lead to the onset of infections with potentially life-threatening complications, especially in vulnerable populations like newborns, elderly, and diabetic patients. With the emergence of superbugs that are resistant to almost all the available antibiotics and the unfruitful discovery of new antimicrobial compounds in the last few decades, there is a demand for novel engineering strategies to approach skin and soft tissue infections associated with the used of biomaterials. Naturally occurring anti-biofouling and antimicrobial interfaces based on spatial structure offer an unprecedented opportunity for biomaterial design, as they do not contribute to bacterial resistance, do not pollute the environment, and can be easily implemented in a variety of biomaterial interfaces. In this article, we review the complications caused by biomaterials in contact with the skin, especially those that compromise medical adhesives, sutures, and wound dressing materials. Then, we introduced bioinspired designs that can be implemented in those materials based on nano- and microscale topographies.


Skin microbiome Skin and soft tissue infections Bioinspired Biofilms Bactericidal nanostructures Microtopography Nanotopography Nanofabrication Medical adhesives Bandages Tapes Sutures Wound dressing 



Material characterization was partially carried out in the Materials Research Laboratory Central Facilities at the University of Illinois at Urbana-Champaign. Authors would like to thank Zachariah Koyn for his technical support on performing part of the material irradiations. Sandra L. Arias would like to thank Monika Makurath and Roshni Bano for their helpful discussions on microbial physiology.


  1. 1.
    Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16(3):143CrossRefGoogle Scholar
  3. 3.
    Williams MR, Gallo RL (2015) The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep 15(11):65CrossRefGoogle Scholar
  4. 4.
    Naik S, Bouladoux N, Linehan JL et al (2015) Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nakatsuji T, Chen TH, Narala S et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9(378):eaah4680CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McNichol L, Lund C, Rosen T, Gray M (2013) Medical adhesives and patient safety: state of the science consensus statements for the assessment, prevention, and treatment of adhesive-related skin injuries. J Dermatol Nurses Assoc 5(6):323–338CrossRefGoogle Scholar
  7. 7.
    Qin Y (2019) Antimicrobial textile dressings to manage wound infection. In: Rajendran S (ed) Advanced textiles for wound care. Woodhead Publishing, CambridgeGoogle Scholar
  8. 8.
    Miller LG, Eisenberg DF, Liu H et al (2015) Incidence of skin and soft tissue infections in ambulatory and inpatient settings, 2005–2010. BMC Infect Dis 15(1):362CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fung HB, Chang JY, Kuczynskf S (2003) A practical guide to the treatment of complicated skin and soft tissue infections. Drugs 63(14):1459–1480CrossRefGoogle Scholar
  10. 10.
    Serra R, Grande R, Butrico L et al (2015) Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 13(5):605–613CrossRefGoogle Scholar
  11. 11.
    Lawton S, Langøen A (2009) Assessing and managing vulnerable periwound skin. World Wide Wounds. Accessed 30 January 2019
  12. 12.
    Gray M, Black JM, Baharestani MM et al (2011) Moisture-associated skin damage: overview and pathophysiology. J Wound Ostomy Continence Nurs 38(3):233–241CrossRefGoogle Scholar
  13. 13.
    Friedman ND, Temkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22(5):416–422CrossRefGoogle Scholar
  14. 14.
    Projan SJ (2003) Why is big pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6(5):427–430CrossRefGoogle Scholar
  15. 15.
    Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568CrossRefGoogle Scholar
  16. 16.
    Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1(3):183CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caldara M, Friedlander RS, Kavanaugh NL, Aizenberg J, Foster KR, Ribbeck K (2012) Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state. Curr Biol 22(24):2325–2330CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC (2016) Monitoring of vital signs with flexible and wearable medical devices. Adv Mater 28(22):4373–4395CrossRefGoogle Scholar
  19. 19.
    Kwak MK, Jeong HE, Suh KY (2011) Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv Mater 23(34):3949–3953CrossRefGoogle Scholar
  20. 20.
    LeBlanc K, Baranoski S (2014) Skin tears: the forgotten wound. Nurs Manage 45(12):36–46CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Anderson A, Foster RS, Brand R, Blyth CC, Kotecha RS (2014) Acute onset of pustules at the site of tape placement in an immunocompromised infant with acute myeloid leukemia. Pediatr Dermatol 31(5):609–610CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wilcox MH, Fitzgerald P, Freeman J et al (2000) A five year outbreak of methicillin-susceptible Staphylococcus aureus phage type 53, 85 in a regional neonatal unit. Epidemiol Infect 124(1):37–45CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konya C, Sanada H, Sugama J, Okuwa M, Kamatani Y, Nakagami G, Sakaki K (2010) Skin injuries caused by medical adhesive tape in older people and associated factors. J Clin Nurs 19(9-10):1236–1242CrossRefGoogle Scholar
  24. 24.
    de Goffau MC, Bergman KA, de Vries HJ, Meessen NE, Degener JE, van Dijl JM, Harmsen HJ (2011) Cold spots in neonatal incubators are hot spots for microbial contamination. Appl Environ Microbiol 77(24):8568–8572CrossRefGoogle Scholar
  25. 25.
    Ness MJ, Davis DM, Carey WA (2013) Neonatal skin care: a concise review. Int J Dermatol 52(1):14–22CrossRefGoogle Scholar
  26. 26.
    Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK Jr, Smith PB, Manzoni P, Jacqz-Aigrain E, Kaguelidou F, Cohen-Wolkowiez M (2012) Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev 88:S69–S74CrossRefGoogle Scholar
  27. 27.
    Lund C (2014) Medical adhesives in the NICU. Newborn Infant Nurs Rev 14(4):160–165CrossRefGoogle Scholar
  28. 28.
    Anjum S, Gupta A, Sharma D et al (2017) Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. J Bioact Compat Pol 32(3):263–279CrossRefGoogle Scholar
  29. 29.
    Kondrup JD, Qayyum AM (2018) Closing the gap: novel abdominal wound closure techniques. Surg Technol Int 32:25–31PubMedGoogle Scholar
  30. 30.
    Greenberg JA, Clark RM (2009) Advances in suture material for obstetric and gynecologic surgery. Rev Obstet Gynecol 2(3):146PubMedGoogle Scholar
  31. 31.
    Dennis C, Sethu S, Nayak S, Mohan L, Morsi Y, Manivasagam G (2016) Suture materials—current and emerging trends. J Biomed Mater Res A 104(6):1544–1559CrossRefGoogle Scholar
  32. 32.
    Altman GH, Diaz F, Jakuba C, Calabro T et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416CrossRefGoogle Scholar
  33. 33.
    Walter CJ, Dumville JC, Sharp CA, Page T (2012) Systematic review and meta-analysis of wound dressings in the prevention of surgical-site infections in surgical wounds healing by primary intention. Br J Surg 99(9):1185–1194CrossRefGoogle Scholar
  34. 34.
    Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK (2011) Improving risk-adjusted measures of surgical site infection for the National Healthcare Safely Network. Infect Control Hosp Epidemiol 32(10):970–986CrossRefGoogle Scholar
  35. 35.
    Berrios-Torres SI, Umscheid CA, Bratzler DW et al (2017) Centers for disease control and prevention guideline for the prevention of surgical site infection. JAMA Surg 152(8):784–791CrossRefGoogle Scholar
  36. 36.
    Kathju S, Nistico L, Hall-Stoodley L, Post JC, Ehrlich GD, Stoodley P (2009) Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect (Larchmt) 10(5):457–461CrossRefGoogle Scholar
  37. 37.
    Serrano C, García-Fernández L, Fernández-Blázquez JP et al (2015) Nanostructured medical sutures with antibacterial properties. Biomaterials 52:291–300CrossRefGoogle Scholar
  38. 38.
    Crovetti G, Martinelli G, Issi M, Barone M et al (2004) Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci 30(2):145–151CrossRefGoogle Scholar
  39. 39.
    Gottrup F (2004) A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg 187(5):S38–S43CrossRefGoogle Scholar
  40. 40.
    Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141CrossRefGoogle Scholar
  41. 41.
    Cardona AF, Wilson SE (2015) Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis 61(suppl_2):S69–S78CrossRefGoogle Scholar
  42. 42.
    Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Abbasipour M, Mirjalili M, Khajavi R, Majidi MM (2014) Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing. J Eng Fiber Fabr 9(1):155892501400900114Google Scholar
  44. 44.
    Brown MS, Ashley B, Koh A (2018) Wearable technology for chronic wound monitoring: current dressings, advancements, and future prospects. Front Bioeng Biotechnol 6:47CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kamoun EA, Kenawy ERS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent Sci 3(3):163–175CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shahverdi S, Hajimiri M, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dehpour AR, Gharehaghaji AA, Dinarvand R (2014) Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm 473(1):345–355CrossRefGoogle Scholar
  48. 48.
    Linklater DP, Juodkazis S, Rubanov S, Ivanova EP (2017) Comment on “Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli”. ACS Appl Mater Interfaces 9(35):29387–29393CrossRefGoogle Scholar
  49. 49.
    Dickson MN, Liang EI, Rodriguez LA, Vollereaux N, Yee AF (2015) Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10(2):021010CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li X, Chen T (2016) Enhancement and suppression effects of a nanopatterned surface on bacterial adhesion. Phys Rev E 93(5):052419CrossRefGoogle Scholar
  51. 51.
    Fisher LE, Yang Y, Yuen MF, Zhang W, Nobbs AH, Su B (2016) Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases 11(1):011014CrossRefGoogle Scholar
  52. 52.
    Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, Chang F, Weibel DB, Theriot JA, Huang KC (2018) The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559(7715):617CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nowlin K, Boseman A, Covell A, LaJeunesse D (2015) Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces. J R Soc Interface 12(102):20140999CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ivanova EP, Hasan J, Webb HK et al (2013) Bactericidal activity of black silicon. Nat Commun 4:2838CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T, Ostrikov K, Oloyede A (2017) Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl Mater Interfaces 9(8):6746–6760CrossRefGoogle Scholar
  56. 56.
    Hizal F, Choi CH, Busscher HJ, van der Mei HC (2016) Staphylococcal adhesion, detachment and transmission on nanopillared Si surfaces. ACS Appl Mater Interfaces 8(44):30430–30439CrossRefGoogle Scholar
  57. 57.
    Diu T, Faruqui N, Sjöström T, Lamarre B, Jenkinson HF, Su B, Ryadnov MG (2014) Cicada-inspired cell-instructive nanopatterned arrays. Sci Rep 4:7122CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lin N, Berton P, Moraes C, Rogers RD, Tufenkji N (2018) Nanodarts, nanoblades, and nanospikes: mechano-bactericidal nanostructures and where to find them. Adv Colloid Interface Sci 252:55–68CrossRefGoogle Scholar
  59. 59.
    Tripathy A, Sen P, Su B, Briscoe WH (2017) Natural and bioinspired nanostructured bactericidal surfaces. Adv Colloid Interface Sci 248:85–104CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kelleher SM, Habimana O, Lawler J, O’reilly B, Daniels S, Casey E, Cowley A (2015) Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces 8(24):14966–14974CrossRefPubMedGoogle Scholar
  61. 61.
    Xue F, Liu J, Guo L, Zhang L, Li Q (2015) Theoretical study on the bactericidal nature of nanopatterned surfaces. J Theor Biol 385:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pogodin S, Hasan J, Baulin VA et al (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104(4):835–840CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Luan Y, Liu S, Pihl M, van der Mei HC, Liu J, Hizal F, Choi CH, Chen H, Ren Y, Busscher HJ (2018) Bacterial interactions with nanostructured surfaces. Curr Opin Colloid Interface Sci 38:170–189CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Lo CW, Taylor JA, Yang S (2006) Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir 22(20):8595–8601CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2(2):89–94CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ma S, Yu B, Pei X, Zhou F (2016) Structural hydrogels. Polymer 98:516–535CrossRefGoogle Scholar
  67. 67.
    Arias SL, Shetty A, Devorkin J, Allain JP (2018) Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta Biomater 77:172–181CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, Allain JP (2016) Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp (JoVE):111Google Scholar
  69. 69.
    Echeverry-Rendon M, Reece LM, Pastrana F, Arias SL, Shetty AR, Pavón JJ, Allain JP (2017) Bacterial nanocellulose magnetically functionalized for neuro-endovascular treatment. Macromol Biosci 17(6):1600382CrossRefGoogle Scholar
  70. 70.
    Civantos A, Martinez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A (2017) Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng 3(7):1245–1261CrossRefGoogle Scholar
  71. 71.
    Douglas TE, Kumari S, Dziadek K et al (2017) Titanium surface functionalization with coatings of chitosan and polyphenol-rich plant extracts. Mater Lett 196:213–216CrossRefGoogle Scholar
  72. 72.
    Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C, Silva JC, Borges JP, Pires E, Chaves P, Correia IJ (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17(6):817–824CrossRefGoogle Scholar
  73. 73.
    Abarrategi A, Civantos A, Ramos V, Sanz Casado JV, López-Lacomba JL (2007) Chitosan film as rhBMP2 carrier: delivery properties for bone tissue application. Biomacromolecules 9(2):711–718CrossRefGoogle Scholar
  74. 74.
    Lopez-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM (2017) Peripheral nerve injury: current challenges, conventional treatment approaches, and new trends in biomaterials-based regenerative strategies. ACS Biomater Sci Eng 3(12):3098–3122CrossRefGoogle Scholar
  75. 75.
    Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8-9):991–1007CrossRefGoogle Scholar
  76. 76.
    Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14(9):589CrossRefGoogle Scholar
  77. 77.
    Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194(10):2413–2425CrossRefGoogle Scholar
  78. 78.
    Leveau JH (2015) Life of microbes on aerial plant parts. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, ChamGoogle Scholar
  79. 79.
    Hochbaum AI, Aizenberg J (2010) Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett 10(9):3717–3721CrossRefGoogle Scholar
  80. 80.
    Epstein AK, Hong D, Kim P, Aizenberg J (2013) Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces. New J Phys 15(9):095018CrossRefGoogle Scholar
  81. 81.
    Sakamoto A, Terui Y, Horie C et al (2014) Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove. FEMS Microbiol Lett 361(1):10–16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sandra L. Arias
    • 1
    Email author
  • Joshua Devorkin
    • 2
  • Ana Civantos
    • 3
  • Camilo Jaramillo
    • 3
  • Jean Paul Allain
    • 3
  1. 1.Nancy E. and Peter C. Meinig School of Biomedical EngineeringCornell UniversityIthacaUSA
  2. 2.Pritzker School of LawNorthwestern UniversityChicagoUSA
  3. 3.Ken and Mary Alice Lindquist Department of Nuclear EngineeringPennsylvania State UniversityState CollegeUSA

Personalised recommendations