Advertisement

Antimicrobial Endodontic Materials

  • Xiaogang Cheng
  • Xiaohua LiuEmail author
Chapter
  • 80 Downloads

Abstract

Bacteria and their by-products are the primary cause of pulpal and periapical diseases that are one of the most common oral diseases. Root canal treatment (RCT) is the most effective procedure to treat pulpal and periapical diseases with severe infection. RCT aims to eliminate the infection from root canals and place filling materials to seal the space to prevent reinfection. Because of the complicated anatomical structure of the tooth root canal, complete elimination of the bacteria that reside in a root canal and the dentinal tubules via mechanical preparation is extremely difficult, if not impossible. Therefore, antimicrobial endodontic materials are indispensable for infection elimination during RCT. Based on the procedure of RCT, different antimicrobial endodontic materials have been developed for root canal irrigation, medication, and obturation (sealing). This chapter discusses the antimicrobial endodontic biomaterials that are used during the three steps of the RCT. Advantages and limitations of each material are emphasized. In addition, recent developments and future research directions of antimicrobial endodontic biomaterials are presented.

Keywords

Antimicrobial Endodontic Dental materials Root canal treatment Pulpal and periapical diseases Tooth 

References

  1. 1.
    Kureishi A, Chow A (1988) The tender tooth. Dentoalveolar, pericoronal, and periodontal infections. Infectious disease clinics of North America 2(1):163–182PubMedPubMedCentralGoogle Scholar
  2. 2.
    Tao L, Herzberg MC (1998) Identifying in vivo expressed streptococcal genes in endocarditis. Methods in enzymology 310:109–116CrossRefGoogle Scholar
  3. 3.
    Genco R, Offenbacher S, Beck J (2002) Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. The Journal of the American Dental Association 133:14S–22SPubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kalowski M (1976) Result of bacteriological studies in cases of difficulties encountered during endodontic treatment of non-vital teeth with periapical lesions. Czasopismo stomatologiczne 29(11):989–995PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sundqvist GK, Eckerbom M, Larsson A, Sjögren U (1979) Capacity of anaerobic bacteria from necrotic dental pulps to induce purulent infections. Infection and immunity 25(2):685–693PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA et al (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183(12):3770–3783PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bergenholtz G (1974) Micro-organisms from necrotic pulp of traumatized teeth. Odontologisk revy 25(4):347–358PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bystrom A, Sundqvist G (1981) Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scandinavian journal of dental research 89(4):321–328PubMedPubMedCentralGoogle Scholar
  9. 9.
    Fouad AF, Barry J, Caimano M, Clawson M, Zhu Q, Carver R et al (2002) PCR-based identification of bacteria associated with endodontic infections. J Clin Microbiol 40(9):3223–3231PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sundqvist G (1994) Taxonomy, ecology, and pathogenicity of the root canal flora. Oral surgery, oral medicine, and oral pathology 78(4):522–530PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gomes BP, Drucker DB, Lilley JD (1994) Associations of specific bacteria with some endodontic signs and symptoms. International endodontic journal 27(6):291–298PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25(2):134–144PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Baumgartner JC, Falkler WA Jr (1991) Bacteria in the apical 5 mm of infected root canals. Journal of endodontics 17(8):380–383PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gomes BP, Pinheiro ET, Gade-Neto CR, Sousa EL, Ferraz CC, Zaia AA et al (2004) Microbiological examination of infected dental root canals. Oral Microbiol Immunol 19(2):71–76PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kalfas S, Figdor D, Sundqvist G (2001) A new bacterial species associated with failed endodontic treatment: identification and description of Actinomyces radicidentis. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 92(2):208–214PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Molander A, Reit C, Dahlen G, Kvist T (1998) Microbiological status of root-filled teeth with apical periodontitis. International endodontic journal 31(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Baumgartner JC, Watts CM, Xia T (2000) Occurrence of Candida albicans in infections of endodontic origin. Journal of endodontics 26(12):695–698PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chavez De Paz LE, Dahlen G, Molander A, Moller A, Bergenholtz G (2003) Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment. International endodontic journal 36(7):500–508PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Foschi F, Cavrini F, Montebugnoli L, Stashenko P, Sambri V, Prati C (2005) Detection of bacteria in endodontic samples by polymerase chain reaction assays and association with defined clinical signs in Italian patients. Oral Microbiol Immunol 20(5):289–295PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. Journal of endodontics 32(2):93–98PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Takahashi K (1998) Microbiological, pathological, inflammatory, immunological and molecular biological aspects of periradicular disease. International endodontic journal 31(5):311–325PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques 37:91–105PubMedPubMedCentralGoogle Scholar
  23. 23.
    Su L, Gao Y, Yu C, Wang H, Yu Q (2010) Surgical endodontic treatment of refractory periapical periodontitis with extraradicular biofilm. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 110(1):e40–e44PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sundqvist G (1992) Ecology of the root canal flora. Journal of endodontics 18(9):427–430PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Noguchi N, Noiri Y, Narimatsu M, Ebisu S (2005) Identification and localization of extraradicular biofilm-forming bacteria associated with refractory endodontic pathogens. Applied and environmental microbiology 71(12):8738–8743PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nair PN, Henry S, Cano V, Vera J (2005) Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 99(2):231–252PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sjogren U, Figdor D, Persson S, Sundqvist G (1997) Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. International endodontic journal 30(5):297–306PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kreisler M, Kohnen W, Beck M, Al Haj H, Christoffers AB, Gotz H et al (2003) Efficacy of NaOCl/H2O2 irrigation and GaAlAs laser in decontamination of root canals in vitro. Lasers in surgery and medicine 32(3):189–196PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tyagi S, Mishra P, Tyagi P (2013) Evolution of root canal sealers: an insight story. European Journal of General Dentistry 2(3):199CrossRefGoogle Scholar
  30. 30.
    Zehnder M (2006) Root canal irrigants. Journal of endodontics 32(5):389–398PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Becker TD, Woollard GW (2001) Endodontic irrigation. General dentistry 49(3):272–276PubMedPubMedCentralGoogle Scholar
  32. 32.
    Siqueira JF Jr, Machado AG, Silveira RM, Lopes HP, de Uzeda M (1997) Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. International endodontic journal 30(4):279–282PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pashley EL, Birdsong NL, Bowman K, Pashley DH (1985) Cytotoxic effects of NaOCl on vital tissue. Journal of endodontics 11(12):525–528PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shih M, Marshall FJ, Rosen S (1970) The bactericidal efficiency of sodium hypochlorite as an endodontic irrigant. Oral surgery, oral medicine, and oral pathology 29(4):613–619PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rutberg M, Spangberg E, Spangberg L (1977) Evaluation of enhanced vascular permeability of endodontic medicaments in vivo. Journal of endodontics 3(9):347–351PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hulsmann M, Hahn W (2000) Complications during root canal irrigation—literature review and case reports. International endodontic journal 33(3):186–193PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Smith JJ, Wayman BE (1986) An evaluation of the antimicrobial effectiveness of citric acid as a root canal irrigant. Journal of endodontics 12(2):54–58PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Siqueira JF Jr, Rocas IN, Favieri A, Lima KC (2000) Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. Journal of endodontics 26(6):331–334PubMedCrossRefGoogle Scholar
  39. 39.
    Cvek M, Nord CE, Hollender L (1976) Antimicrobial effect of root canal debridement in teeth with immature root. A clinical and microbiologic study. Odontologisk revy 27(1):1–10PubMedGoogle Scholar
  40. 40.
    Bergenholtz G, Spangberg L (2004) Controversies in endodontics. Critical reviews in oral biology and medicine 15(2):99–114PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    White RR, Hays GL, Janer LR (1997) Residual antimicrobial activity after canal irrigation with chlorhexidine. Journal of endodontics 23(4):229–231PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Delany GM, Patterson SS, Miller CH, Newton CW (1982) The effect of chlorhexidine gluconate irrigation on the root canal flora of freshly extracted necrotic teeth. Oral surgery, oral medicine, and oral pathology 53(5):518–523PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Heling I, Sommer M, Steinberg D, Friedman M, Sela MN (1992) Microbiological evaluation of the efficacy of chlorhexidine in a sustained-release device for dentine sterilization. International endodontic journal 25(1):15–19PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gomes BP, Souza SF, Ferraz CC, Teixeira FB, Zaia AA, Valdrighi L et al (2003) Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. International endodontic journal 36(4):267–275PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Vahdaty A, Pitt Ford TR, Wilson RF (1993) Efficacy of chlorhexidine in disinfecting dentinal tubules in vitro. Endodontics & dental traumatology 9(6):243–248CrossRefGoogle Scholar
  46. 46.
    Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, de Souza-Filho FJ (2004) In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 97(1):79–84PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Buck RA, Eleazer PD, Staat RH, Scheetz JP (2001) Effectiveness of three endodontic irrigants at various tubular depths in human dentin. Journal of endodontics 27(3):206–208PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jeansonne MJ, White RR (1994) A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. Journal of endodontics 20(6):276–278PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Oncag O, Hosgor M, Hilmioglu S, Zekioglu O, Eronat C, Burhanoglu D (2003) Comparison of antibacterial and toxic effects of various root canal irrigants. International endodontic journal 36(6):423–432PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kuruvilla JR, Kamath MP (1998) Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. Journal of endodontics 24(7):472–476PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Torabinejad M, Handysides R, Khademi AA, Bakland LK (2002) Clinical implications of the smear layer in endodontics: a review. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 94(6):658–666PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yamada RS, Armas A, Goldman M, Lin PS (1983) A scanning electron microscopic comparison of a high volume final flush with several irrigating solutions: part 3. Journal of endodontics 9(4):137–142PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nagamatsu Y, Chen K-K, Tajima K, Kakigawa H, Kozono Y (2002) Durability of bactericidal activity in electrolyzed neutral water by storage. Dental materials journal 21(2):93–104PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kubota A, Goda T, Tsuru T, Yonekura T, Yagi M, Kawahara H et al (2015) Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surgery today 45:876–879PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rahman S, Ding T, Oh D-H (2010) Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139(3):147–153PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ozaki M, Ohshima T, Mukumoto M, Konishi H, Hirashita A, Maeda N et al (2012) A study for biofilm removing and antimicrobial effects by microbubbled tap water and other functional water, electrolyzed hypochlorite water and ozonated water. Dental materials journal 31(4):662–668PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Park H, Hung Y-C, Chung D (2004) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157: H7 and Listeria monocytogenes. Int J Food Microbiol 91(1):13–18PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen X, Li P, Wang X, Gu M, Zhao C, Sloan A et al (2013) Ex vivo antimicrobial efficacy of strong acid electrolytic water against Enterococcus faecalis biofilm. Int Endod J 46(10):938–946PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    G-i H, Uemura M, Weine FS, Toda T (1996) Removal of smear layer in the root canal using oxidative potential water. J Endod 22(12):643–645CrossRefGoogle Scholar
  60. 60.
    Kiura H, Sano K, Morimatsu S, Nakano T, Morita C, Yamaguchi M et al (2002) Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. Journal of Microbiological Methods 49(3):285–293PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cheng X, Tian Y, Zhao C, Qu T, Ma C, Liu X et al (2016) Bactericidal effect of strong acid electrolyzed water against flow enterococcus faecalis biofilms. Journal of endodontics 42(7):1120–1125PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Qing Y, Akita Y, Kawano S, Kawazu S, Yoshida T, Sekine I (2006) Cleaning efficacy and dentin micro-hardness after root canal irrigation with a strong acid electrolytic water. J Endod 32(11):1102–1106PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Shabahang S, Pouresmail M, Torabinejad M (2003) In vitro antimicrobial efficacy of MTAD and sodium hypochlorite. Journal of endodontics 29(7):450–452PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mancini M, Armellin E, Casaglia A, Cerroni L, Cianconi L (2009) A comparative study of smear layer removal and erosion in apical intraradicular dentine with three irrigating solutions: a scanning electron microscopy evaluation. Journal of endodontics 35(6):900–903PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Torabinejad M, Shabahang S, Aprecio RM, Kettering JD (2003) The antimicrobial effect of MTAD: an in vitro investigation. Journal of endodontics 29(6):400–403PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Shabahang S, Torabinejad M (2003) Effect of MTAD on Enterococcus faecalis-contaminated root canals of extracted human teeth. Journal of endodontics 29(9):576–579PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Portenier I, Waltimo T, Orstavik D, Haapasalo M (2006) Killing of Enterococcus faecalis by MTAD and chlorhexidine digluconate with or without cetrimide in the presence or absence of dentine powder or BSA. Journal of endodontics 32(2):138–141PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kho P, Baumgartner JC (2006) A comparison of the antimicrobial efficacy of NaOCl/Biopure MTAD versus NaOCl/EDTA against Enterococcus faecalis. Journal of endodontics 32(7):652–655PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Dunavant TR, Regan JD, Glickman GN, Solomon ES, Honeyman AL (2006) Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilms. Journal of endodontics 32(6):527–531PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhang W, Torabinejad M, Li Y (2003) Evaluation of cytotoxicity of MTAD using the MTT-tetrazolium method. Journal of endodontics 29(10):654–657PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ruff ML, McClanahan SB, Babel BS (2006) In vitro antifungal efficacy of four irrigants as a final rinse. Journal of endodontics 32(4):331–333PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Clegg MS, Vertucci FJ, Walker C, Belanger M, Britto LR (2006) The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. Journal of endodontics 32(5):434–437PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nagayoshi M, Kitamura C, Fukuizumi T, Nishihara T, Terashita M (2004) Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. Journal of endodontics 30(11):778–781PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tay FR, Gu LS, Schoeffel GJ, Wimmer C, Susin L, Zhang K et al (2010) Effect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. Journal of endodontics 36(4):745–750PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Plotino G, Pameijer CH, Grande NM, Somma F (2007) Ultrasonics in endodontics: a review of the literature. J Endod 33(2):81–95PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    George R, Meyers IA, Walsh LJ (2008) Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal. Journal of endodontics 34(12):1524–1527PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    De Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J (2010) Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. Journal of endodontics 36(9):1580–1583PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ordinola-Zapata R, Bramante CM, Aprecio RM, Handysides R, Jaramillo DE (2014) Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. International endodontic journal 47(7):659–666PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Huang TY, Gulabivala K, Ng YL (2008) A bio-molecular film ex-vivo model to evaluate the influence of canal dimensions and irrigation variables on the efficacy of irrigation. International endodontic journal 41(1):60–71PubMedPubMedCentralGoogle Scholar
  80. 80.
    Peeters HH, Gutknecht N (2014) Efficacy of laser-driven irrigation versus ultrasonic in removing an airlock from the apical third of a narrow root canal. Australian endodontic journal 40(2):47–53PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Meire MA, Coenye T, Nelis HJ, De Moor RJ (2012) Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. International endodontic journal 45(5):482–491PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gordon W, Atabakhsh VA, Meza F, Doms A, Nissan R, Rizoiu I et al (2007) The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with radial emitting tips on root canal dentin walls infected with Enterococcus faecalis. Journal of the American Dental Association 138(7):992–1002PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Klinke T, Klimm W, Gutknecht N (1997) Antibacterial effects of Nd:YAG laser irradiation within root canal dentin. Journal of clinical laser medicine & surgery 15(1):29–31CrossRefGoogle Scholar
  84. 84.
    Moritz A, Schoop U, Goharkhay K, Jakolitsch S, Kluger W, Wernisch J et al (1999) The bactericidal effect of Nd:YAG, Ho:YAG, and Er:YAG laser irradiation in the root canal: an in vitro comparison. Journal of clinical laser medicine & surgery 17(4):161–164CrossRefGoogle Scholar
  85. 85.
    Hellingwerf KJ, Hoff WD, Crielaard W (1996) Photobiology of microorganisms: how photosensors catch a photon to initialize signalling. Molecular microbiology 21(4):683–693PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Camargo SE, Valera MC, Camargo CH, Fonseca MB, Menezes MM (2005) Effects of Nd:YAG laser irradiation on root canal dentin wall: a scanning electron microscopic study. Photomedicine and laser surgery 23(4):399–404PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Spencer P, Cobb CM, McCollum MH, Wieliczka DM (1996) The effects of CO2 laser and Nd:YAG with and without water/air surface cooling on tooth root structure: correlation between FTIR spectroscopy and histology. Journal of periodontal research 31(7):453–462PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Aoki A, Ishikawa I, Yamada T, Otsuki M, Watanabe H, Tagami J et al (1998) Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. Journal of dental research 77(6):1404–1414PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yamazaki R, Goya C, Yu DG, Kimura Y, Matsumoto K (2001) Effects of erbium,chromium:YSGG laser irradiation on root canal walls: a scanning electron microscopic and thermographic study. Journal of endodontics 27(1):9–12PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bolhari B, Ehsani S, Etemadi A, Shafaq M, Nosrat A (2014) Efficacy of Er,Cr:YSGG laser in removing smear layer and debris with two different output powers. Photomedicine and laser surgery 32(10):527–532PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cheng X, Guan S, Lu H, Zhao C, Chen X, Li N et al (2012) Evaluation of the bactericidal effect of Nd: YAG, Er: YAG, Er, Cr: YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals. Lasers in surgery and medicine 44(10):824–831PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Cheng X, Chen B, Qiu J, He W, Lv H, Qu T et al (2016) Bactericidal effect of Er:YAG laser combined with sodium hypochlorite irrigation against Enterococcus faecalis deep inside dentinal tubules in experimentally infected root canals. J Med Microbiol 65(2):176–187PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Macedo RG, Wesselink PR, Zaccheo F, Fanali D, Van Der Sluis LW (2010) Reaction rate of NaOCl in contact with bovine dentine: effect of activation, exposure time, concentration and pH. International endodontic journal 43(12):1108–1115PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Blanken J, De Moor RJ, Meire M, Verdaasdonk R (2009) Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study. Lasers in surgery and medicine 41(7):514–519PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Koch JD, Jaramillo DE, DiVito E, Peters OA (2016) Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV). Clin Oral Investig 20(2):381–386PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Matsumoto H, Yoshimine Y, Akamine A (2011) Visualization of irrigant flow and cavitation induced by Er: YAG laser within a root canal model. J Endod 37(6):839–843PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Levy G, Rizoiu I, Friedman S, Lam H (1996) Pressure waves in root canals induced by Nd: YAG laser. Journal of endodontics 22(2):81–84PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    El Karim I, Kennedy J, Hussey D (2007) The antimicrobial effects of root canal irrigation and medication. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 103(4):560–569PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Foreman PC, Barnes IE (1990) Review of calcium hydroxide. International endodontic journal 23(6):283–297PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Nerwich A, Figdor D, Messer HH (1993) pH changes in root dentin over a 4-week period following root canal dressing with calcium hydroxide. Journal of endodontics 19(6):302–306PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Peters LB, van Winkelhoff AJ, Buijs JF, Wesselink PR (2002) Effects of instrumentation, irrigation and dressing with calcium hydroxide on infection in pulpless teeth with periapical bone lesions. International endodontic journal 35(1):13–21PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Siqueira JF Jr, de Uzeda M (1996) Disinfection by calcium hydroxide pastes of dentinal tubules infected with two obligate and one facultative anaerobic bacteria. Journal of endodontics 22(12):674–676PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Haapasalo HK, Siren EK, Waltimo TM, Orstavik D, Haapasalo MP (2000) Inactivation of local root canal medicaments by dentine: an in vitro study. International endodontic journal 33(2):126–131PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Fuss Z, Mizrahi A, Lin S, Cherniak O, Weiss EI (2002) A laboratory study of the effect of calcium hydroxide mixed with iodine or electrophoretically activated copper on bacterial viability in dentinal tubules. International endodontic journal 35(6):522–526PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Molander A, Reit C, Dahlen G (1999) The antimicrobial effect of calcium hydroxide in root canals pretreated with 5% iodine potassium iodide. Endodontics & dental traumatology 15(5):205–209CrossRefGoogle Scholar
  106. 106.
    Siren EK, Haapasalo MP, Waltimo TM, Orstavik D (2004) In vitro antibacterial effect of calcium hydroxide combined with chlorhexidine or iodine potassium iodide on Enterococcus faecalis. Eur J Oral Sci 112(4):326–331PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Torneck CD, Smith JS, Grindall P (1973) Biologic effects of endodontic procedures on developing incisor teeth. IV. Effect of debridement procedures and calcium hydroxide-camphorated parachlorophenol paste in the treatment of experimentally induced pulp and periapical disease. Oral surgery, oral medicine, and oral pathology 35(4):541–554PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hoshino E, Kurihara-Ando N, Sato I, Uematsu H, Sato M, Kota K et al (1996) In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. International endodontic journal 29(2):125–130PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Moskow A, Morse DR, Krasner P, Furst ML (1984) Intracanal use of a corticosteroid solution as an endodontic anodyne. Oral surgery, oral medicine, and oral pathology 58(5):600–604PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Heling I, Pecht M (1991) Efficacy of Ledermix paste in eliminating Staphylococcus aureus from infected dentinal tubules in vitro. Endodontics & dental traumatology 7(6):251–254CrossRefGoogle Scholar
  111. 111.
    Ørstavik D (2005) Materials used for root canal obturation: technical, biological and clinical testing. Endodontic topics 12(1):25–38CrossRefGoogle Scholar
  112. 112.
    Grossman LLI, Oliet S, Del Río CE (1988) Endodontic practice. Lea & Febiger, New YorkGoogle Scholar
  113. 113.
    Hume WR (1986) The pharmacologic and toxicological properties of zinc oxide-eugenol. The Journal of the American Dental Association 113(5):789–791PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Leonardo MR, da Silva LAB, Tanomaru Filho M, da Silva RS (1999) Release of formaldehyde by 4 endodontic sealers. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 88(2):221–225PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kreth J, Kim D, Nguyen M, Hsiao G, Mito R, Kang M et al (2008) The antimicrobial effect of silver ion impregnation into endodontic sealer against Streptococcus mutans. Open Dentistry Journal 2:18–23PubMedPubMedCentralGoogle Scholar
  116. 116.
    Wang Z, Shen Y, Haapasalo M (2014) Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. Journal of endodontics 40(4):505–508PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Du T, Wang Z, Shen Y, Ma J, Cao Y, Haapasalo M (2015) Combined antibacterial effect of sodium hypochlorite and root canal sealers against enterococcus faecalis biofilms in dentin canals. Journal of endodontics 41(8):1294–1298PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Sagsen B, Er O, Esel D, Yagmur G, Altintop Y (2009) In vitro pharmacodynamic activities of root canal sealers on Enterococcus faecalis. J Contemp Dent Pract 10:35–42PubMedPubMedCentralGoogle Scholar
  119. 119.
    Zhou HM, Du TF, Shen Y, Wang ZJ, Zheng YF, Haapasalo M (2015) In vitro cytotoxicity of calcium silicate-containing endodontic sealers. Journal of endodontics 41(1):56–61PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Qu T, Liu X (2013) Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. Journal of Materials Chemistry B 1(37):4764–4772PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. International journal of antimicrobial agents 39(5):381–389PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Gorduysus M, Avcu N, Gorduysus O, Pekel A, Baran Y, Avcu F et al (2007) Cytotoxic effects of four different endodontic materials in human periodontal ligament fibroblasts. J Endod 33(12):1450–1454PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9(1):4457–4486PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Faria-Júnior N, Tanomaru-Filho M, Berbert FLCV, Guerreiro-Tanomaru J (2013) Antibiofilm activity, pH and solubility of endodontic sealers. Int Endod J 46(8):755–762PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Poggio C, Lombardini M, Colombo M, Dagna A, Saino E, Arciola CR et al (2011) Antibacterial effects of six endodontic sealers. International Journal of Artificial Organs 34(9):908–913PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Saha S, Samadi F, Jaiswal J, Ghoshal U (2010) Antimicrobial activity of different endodontic sealers: an in vitro evaluation. Journal of Indian Society of Pedodontics and Preventive Dentistry 28(4):251PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Heyder M, Kranz S, Völpel A, Pfister W, Watts DC, Jandt KD et al (2013) Antibacterial effect of different root canal sealers on three bacterial species. Dental Materials 29(5):542–549PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Mozini ACA, Vansan LP, Sousa Neto MD, Pietro R (2009) Influence of the length of remaining root canal filling and post space preparation on the coronal leakage of Enterococcus faecalis. Brazilian Journal of Microbiology 40(1):174–179PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Miyagak DC, de Carvalho EM, Robazza CR, Chavasco JK, Levorato GL (2006) In vitro evaluation of the antimicrobial activity of endodontic sealers. Brazilian oral research 20(4):303–306PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Willershausen I, Callaway A, Briseño B, Willershausen B (2011) In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med 7:15PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Smadi L, Khraisat A, Al-Tarawneh S, Mahafzah A, Salem A (2008) In vitro evaluation of the antimicrobial activity of nine root canal sealers: direct contact test. Tropical dental journal 31(124):11–18PubMedPubMedCentralGoogle Scholar
  132. 132.
    Shantiaee Y, Dianat O, Janani A, Ahari GK (2010) In vitro evaluation of the antibacterial activity of three root canal sealers. Iranian endodontic journal 5(1):1–5PubMedPubMedCentralGoogle Scholar
  133. 133.
    Farmakis ETR, Kontakiotis EG, Tseleni-Kotsovili A, Tsatsas VG (2012) Comparative in vitro antibacterial activity of six root canal sealers against Enterococcus faecalis and Proteus vulgaris. Journal of investigative and clinical dentistry 3(4):271–275PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Prestegaard H, Portenier I, Ørstavik D, Kayaoglu G, Haapasalo M, Endal U (2014) Antibacterial activity of various root canal sealers and root-end filling materials in dentin blocks infected ex vivo with Enterococcus faecalis. Acta Odontologica Scandinavica 72(8):970–976PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Sharma D, Grover R, Pinnameneni PS, Dey S, Raju PR (2014) Evaluation of efficacy of combinations of five endodontic sealers with five antibiotics against Enterococcus Faecalis–An in-vitro study. Journal of international oral health: JIOH 6(2):90PubMedPubMedCentralGoogle Scholar
  136. 136.
    Baer J, Maki JS (2010) In vitro evaluation of the antimicrobial effect of three endodontic sealers mixed with amoxicillin. J Endod 36(7):1170–1173PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Hoelscher AA, Bahcall JK, Maki JS (2006) In vitro evaluation of the antimicrobial effects of a root canal sealer-antibiotic combination against Enterococcus faecalis. J Endod 32(2):145–147PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Shih Y-H, Lin D-J, Chang K-W, Hsia S-M, Ko S-Y, Lee S-Y et al (2014) Evaluation physical characteristics and comparison antimicrobial and anti-inflammation potentials of dental root canal sealers containing hinokitiol in vitro. PloS one 9(6):e94941PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Kishen A, Shi Z, Shrestha A, Neoh KG (2008) An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 34(12):1515–1520PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kreth J, Kim D, Nguyen M, Hsiao G, Mito R, Kang M et al (2008) The antimicrobial effect of silver ion impregnation into endodontic sealer against Streptococcus mutans. The open dentistry journal 2:18PubMedPubMedCentralGoogle Scholar
  141. 141.
    Zhang H, Oyanedel-Craver V (2013) Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters. Journal of hazardous materials 260:272–277PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Li L, Pu T, Zhanel G, Zhao N, Ens W, Liu S (2012) New biocide with both N-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced healthcare materials 1(5):609–620PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Kochan J, Scheidle M, van Erkel J, Bikel M, Büchs J, Wong JE et al (2012) Characterization of antibacterial polyethersulfone membranes using the respiration activity monitoring system (RAMOS). Water research 46(16):5401–5409PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Sajomsang W, Gonil P, Tantayanon S (2009) Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization. International journal of biological macromolecules 44(5):419–427PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Liu WS, Wang CH, Sun JF, Hou GG, Wang YP, Qu RJ (2015) Synthesis, characterization and antibacterial properties of dihydroxy quaternary ammonium salts with long chain alkyl bromides. Chemical biology & drug design 85(1):91–97CrossRefGoogle Scholar
  146. 146.
    Yang Z, Degorce-Dumas J-R, Yang H, Guibal E, Li A, Cheng R (2014) Flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant. Environmental science & technology 48(12):6867–6873CrossRefGoogle Scholar
  147. 147.
    Jennings MC, Ator LE, Paniak TJ, Minbiole KP, Wuest WM (2014) Biofilm-eradicating properties of quaternary ammonium amphiphiles: simple mimics of antimicrobial peptides. ChemBioChem 15(15):2211–2215PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Beyth N, Shvero DK, Zaltsman N, Houri-Haddad Y, Abramovitz I, Davidi MP et al (2013) Rapid kill—novel endodontic sealer and Enterococcus faecalis. PloS one 8(11):e78586PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Calvani M, Critelli L, Gallo G, Giorgi F, Gramiccioli G, Santaniello M et al (1998) L-Carnitine esters as “soft”, broad-spectrum antimicrobial amphiphiles. Journal of medicinal chemistry 41(13):2227–2233PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI (2010) Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences 107(51):22038–22043CrossRefGoogle Scholar
  151. 151.
    Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HH (2013) Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. Journal of dentistry 41(4):345–355PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Melo MA, Wu J, Weir MD, Xu HH (2014) Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate. Journal of dentistry 42(9):1193–1201PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Kesler Shvero D, Abramovitz I, Zaltsman N, Perez Davidi M, Weiss E, Beyth N (2013) Towards antibacterial endodontic sealers using quaternary ammonium nanoparticles. International endodontic journal 46(8):747–754PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Barros J, Silva M, Rodrigues M, Alves F, Lopes M, Pina-Vaz I et al (2014) Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. Int Endod J 47(8):725–734PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Mohammadi Z, Yazdizadeh M (2006) Evaluation of the antibacterial activity of new root canal sealers. The Journal of clinical dentistry 18(3):70–72Google Scholar
  156. 156.
    Wang X, Chang J, Hu S (2012) A study on the sealing ability and antibacterial activity of Ca 3 SiO 5/CaCl 2 composite cement for dental applications. Dental materials journal 31(4):617–622PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Camps J, About I (2003) Cytotoxicity testing of endodontic sealers: a new method. J Endod 29(9):583–586PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Batur YB, Ersev H (2008) Five-year follow-up of a root canal filling material in the maxillary sinus: a case report. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 106(4):e54–e56PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Schwarze T, Fiedler I, Leyhausen G, Geurtsen W (2002) The cellular compatibility of five endodontic sealers during the setting period. J Endod 28(11):784–786PubMedCrossRefGoogle Scholar
  160. 160.
    Yesilsoy C, Koren LZ, Morse DR, Kobayashi C (1988) A comparative tissue toxicity evaluation of established and newer root canal sealers. Oral Surgery, Oral Medicine, Oral Pathology 65(4):459–467PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Silva EJ, Santos CC, Zaia AA (2013) Long-term cytotoxic effects of contemporary root canal sealers. Journal of Applied Oral Science 21(1):43–47PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Swierenga S, MacManus J, Whitfield J (1976) Regulation by calcium of the proliferation of heart cells from young adult rats. In Vitro 12(1):31–36PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Grossman LI (1958) An improved root canal cement. The Journal of the American Dental Association 56(3):381–385PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Schafer E, Zandbiglari T (2003) Solubility of root-canal sealers in water and artificial saliva. International endodontic journal 36(10):660–669PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Camps J, Pommel L, Bukiet F, About I (2004) Influence of the powder/liquid ratio on the properties of zinc oxide-eugenol-based root canal sealers. Dental materials 20(10):915–923PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Gomes-Filho JE, Watanabe S, Bernabe PF, de Moraes Costa MT (2009) A mineral trioxide aggregate sealer stimulated mineralization. Journal of endodontics 35(2):256–260PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Cheng X, Qu T, Ma C, Xiang D, Yu Q, Liu X (2017) Bioactive mono-dispersed nanospheres with long-term antibacterial effects for endodontic sealing. J Mater Chem B 5(6):1195–1204PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Biomedical Sciences DepartmentTexas A&M University College of DentistryDallasUSA
  2. 2.Department of Operative Dentistry and EndodonticsSchool of Stomatology, The Fourth Military Medical UniversityXi’anPR China

Personalised recommendations