Advertisement

Tellurium, the Forgotten Element: A Review of the Properties, Processes, and Biomedical Applications of the Bulk and Nanoscale Metalloid

  • David Medina-Cruz
  • William Tien-Street
  • Ada Vernet-Crua
  • Bohan Zhang
  • Xinjing Huang
  • Athma Murali
  • Junjiang Chen
  • Yang Liu
  • Jose Miguel Garcia-Martin
  • Jorge L. Cholula-Díaz
  • Thomas WebsterEmail author
Chapter
  • 143 Downloads

Abstract

Tellurium (Te) is a brittle, mildly toxic, and rare metalloid with an extremely low abundance in the planet. The element has been used in both its bulk and nanoscale forms for several applications in solar cell industry, semiconductors, catalysis, or heavy metal removal, among others. The end of the last century witnessed an explosion in new strategies for synthesizing different Te nanostructures with controlled compositions, sizes, morphologies, and properties, which allow these structures to enhance their impact in numerous applications. Nanomedicine has recently taken advantage of the metalloid in its nanoscale, showing promising applications as antibacterial, anticancer, and imaging agents. Nevertheless, the biological role of Te within living organisms remains mostly unknown, and just a few reports appear working on this matter. In this chapter, the forgotten elements are extensively studied in terms of its chemical, physical, and geological properties, and its main applications are summarized and studied for both bulk and nanosized tellurium. At the end, tellurium’s most important biomedical applications are presented with the aim to establish a general concept of the metalloid as a powerful biomedical tool with a bright future yet to be discovered.

Keywords

Tellurium Nanomaterial Properties Applications Biomedical Antibacterial 

References

  1. 1.
    CRC handbook of chemistry and physics (1977) CRC Press, CleavelandGoogle Scholar
  2. 2.
    Bouroushian M (2010) Electrochemistry of the chalcogens. Springer, Berlin, pp 57–75.  https://doi.org/10.1007/978-3-642-03967-6_2CrossRefGoogle Scholar
  3. 3.
    Chivers T, Laitinen RS (2015) Tellurium: a maverick among the chalcogens. Chem Soc Rev 44(7):1725–1739.  https://doi.org/10.1039/c4cs00434eCrossRefPubMedGoogle Scholar
  4. 4.
    Frieden E (1972) The chemical elements of life. Sci Am 227(1):52–60. http://www.ncbi.nlm.nih.gov/pubmed/5044408CrossRefGoogle Scholar
  5. 5.
    Dobbin L (1900) A handbook of physics and chemistry. Edinb Med J 7(1):67. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260252/PubMedCentralGoogle Scholar
  6. 6.
    Szabadváry F (1997) Neue Deutsche Biographie, Band 18. https://www.deutsche-biographie.de/pnd134201868.html#ndbcontent
  7. 7.
  8. 8.
  9. 9.
    Lukács D (1977) [Pál Kitaibel]. Orv Hetil 118(44):2660–62. http://www.ncbi.nlm.nih.gov/pubmed/335328
  10. 10.
    Rouvray DH (2004) Elements in the history of the periodic table. Endeavour 28(2):69–74.  https://doi.org/10.1016/j.endeavour.2004.04.006CrossRefPubMedGoogle Scholar
  11. 11.
    Ba LA, Döring M, Jamier V, Jacob C (2010) Tellurium: an element with great biological potency and potential. Org Biomol Chem 8(19):4203–4216.  https://doi.org/10.1039/c0Ob00086hCrossRefPubMedGoogle Scholar
  12. 12.
    Woollins JD, Laitinen R (eds) (2011) Selenium and tellurium chemistry. Springer, Berlin.  https://doi.org/10.1007/978-3-642-20699-3CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Minerals Information Center, National (2017) Mineral commodity summaries. https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf. Accessed 2 Feb 2019
  15. 15.
    Rosing MT (2008) On the evolution of minerals. Nature 456(7221):456–458.  https://doi.org/10.1038/456456aCrossRefPubMedGoogle Scholar
  16. 16.
    Survey, U.S. Geological (2018) Minerals yearbook. In: Minerals yearbook, vol III.  https://doi.org/10.3133/MYBVIII
  17. 17.
    Tian P, Xu X, Ao C, Ding D, Li W, Si R, Tu W, Xu J, Han Y-F (2017) Direct and selective synthesis of hydrogen peroxide over palladium-tellurium catalysts at ambient pressure. ChemSusChem 10(17):3342–3346.  https://doi.org/10.1002/cssc.201701238CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou T, Zhu Z, Liu X, Liang Z, Wang X (2018) A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics. Micromachines 9(7):337.  https://doi.org/10.3390/mi9070337CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, La Mattina F, Blösch P et al (2013) Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat Commun 4(1):2306.  https://doi.org/10.1038/ncomms3306CrossRefPubMedGoogle Scholar
  20. 20.
    Daniel-Hoffmann M, Sredni B, Nitzan Y (2012) Bactericidal activity of the organo-tellurium compound AS101 against Enterobacter Cloacae. J Antimicrob Chemother 67(9):2165–2172.  https://doi.org/10.1093/jac/dks185CrossRefPubMedGoogle Scholar
  21. 21.
    Mohanty P, Park J, Kim B (2006a) Large scale synthesis of highly pure single crystalline tellurium nanowires by thermal evaporation method. J Nanosci Nanotechnol 6(11):3380–3383. http://www.ncbi.nlm.nih.gov/pubmed/17252770CrossRefGoogle Scholar
  22. 22.
    Mohanty P, Kang T, Kim B, Park J (2006b) Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections. J Phys Chem B 110(2):791–795.  https://doi.org/10.1021/JP0551364CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu Y-J, Wang W-W, Qi R-J, Hu X-L (2004) Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 43(11):1410–1414.  https://doi.org/10.1002/anie.200353101CrossRefGoogle Scholar
  24. 24.
    ESPI Metals (2019) Espimetals—tellurium. http://www.espimetals.com/index.php/technical-data/253-tellurium
  25. 25.
    The Merck index online—chemicals, drugs and biologicals. 2019. https://www.rsc.org/merck-index
  26. 26.
    Johnstone AH (2007) CRC handbook of chemistry and physics-69th edition editor in chief R. C. Weast, CRC Press Inc., Boca Raton, Florida, 1988, Pp. 2400, Price £57.50. ISBN 0-8493-0369-5. J Chem Technol Biotechnol 50(2):294–295.  https://doi.org/10.1002/jctb.280500215CrossRefGoogle Scholar
  27. 27.
    Lin S, Li W, Chen Z, Shen J, Ge B, Pei Y (2016) Tellurium as a high-performance elemental thermoelectric. Nat Commun 7(1):10287.  https://doi.org/10.1038/ncomms10287.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhan L, Xu Z (2014) State-of-the-art of recycling E-wastes by vacuum metallurgy separation. Environ Sci Technol 48(24):14092–14102.  https://doi.org/10.1021/es5030383CrossRefPubMedGoogle Scholar
  29. 29.
    Ollivier PRL, Bahrou AS, Marcus S, Cox T, Church TM, Hanson TE (2008) Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes. Appl Environ Microbiol 74(23):7163–7173.  https://doi.org/10.1128/AEM.00733-08CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dirmyer MR, Martin J, Nolas GS, Sen A, Badding JV (2009) Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5(8):933–937.  https://doi.org/10.1002/smll.200801206CrossRefPubMedGoogle Scholar
  31. 31.
    Nyk J, Onderka B (2012) Thermodynamics of oxygen in dilute liquid silver–tellurium alloys. Monatsh Chem 143(9):1219–1224.  https://doi.org/10.1007/s00706-012-0771-zCrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang T, Ke H, Wang Q, Tang Y’a, Deng Y, Yang H, Yang X et al (2017a) Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano 11(10):10012–10024.  https://doi.org/10.1021/acsnano.7b04230CrossRefPubMedGoogle Scholar
  33. 33.
    Fritzsche H (1952) Interpretation of the double reversal of the hall effect in tellurium. Science 115(2995):571–572.  https://doi.org/10.1126/science.115.2995.571.CrossRefPubMedGoogle Scholar
  34. 34.
    Otjacques C, Raty J-Y, Coulet M-V, Johnson M, Schober H, Bichara C, Gaspard J-P (2009) Dynamics of the negative thermal expansion in tellurium based liquid alloys. Phys Rev Lett 103(24):245901.  https://doi.org/10.1103/PhysRevLett.103.245901CrossRefPubMedGoogle Scholar
  35. 35.
    Churchill HOH, Salamo GJ, Yu S-Q, Hironaka T, Hu X, Stacy J, Shih I (2017) Toward single atom chains with exfoliated tellurium. Nanoscale Res Lett 12(1):488.  https://doi.org/10.1186/s11671-017-2255-xCrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bijelic A, Rompel A (2017) Ten good reasons for the use of the tellurium-centered Anderson–Evans polyoxotungstate in protein crystallography. Acc Chem Res 50(6):1441–1448.  https://doi.org/10.1021/acs.accounts.7b00109CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Harrison WTA, Johnston MG, IUCr (2014) Crystal structure of ammonium divanadium (IV,V) tellurium(IV) heptaoxide. Acta Cryst 70(7):27–30.  https://doi.org/10.1107/S1600536814011015CrossRefGoogle Scholar
  38. 38.
    Brown PJ, Forsyth JB, IUCr (1996) The crystal structure and optical activity of tellurium. Acta Cryst 52(3):408–412.  https://doi.org/10.1107/S0108767395017144CrossRefGoogle Scholar
  39. 39.
    Myers JP, Fronczek FR, Junk T (2016) The first crystal structures of six- and seven-membered tellurium- and nitrogen-containing (Te—N) heterocycles: 2 H -1,4-benzotellurazin-3(4 H )-one and 2,3-dihydro-1,5-benzotellurazepin-4(5 H)-one. Acta Cryst 72(1):1–5.  https://doi.org/10.1107/S2053229615022378CrossRefGoogle Scholar
  40. 40.
    Bloomer WD, McLaughlin WH, Neirinckx RD, Adelstein SJ, Gordon PR, Ruth TJ, Wolf AP (1981) Astatine-211—tellurium radiocolloid cures experimental malignant ascites. Science 212(4492):340–341. http://www.ncbi.nlm.nih.gov/pubmed/7209534.CrossRefGoogle Scholar
  41. 41.
    Ma C, Yan J, Huang Y, Wang C, Yang G (2018) The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Sci Adv 4(8):eaas9894.  https://doi.org/10.1126/sciadv.aas9894CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pugin B, Cornejo FA, Muñoz-Díaz P, Muñoz-Villagrán CM, Vargas-Pérez JI, Arenas FA, Vásquez CC (2014) Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties. Appl Environ Microbiol 80(22):7061–7070.  https://doi.org/10.1128/AEM.02207-14CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu Z, Hu Z, Liang J, Li S, Yang Y, Peng S, Qian Y (2004) Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20(1):214–218.  https://doi.org/10.1021/LA035160DCrossRefPubMedGoogle Scholar
  44. 44.
    Graf C, Assoud A, Mayasree O, Kleinke H (2009) Solid state polyselenides and polytellurides: a large variety of Se–Se and Te–Te interactions. Molecules 14(9):3115–3131.  https://doi.org/10.3390/molecules14093115CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ogra Y, Kobayashi R, Ishiwata K, Suzuki KT (2008) Comparison of distribution and metabolism between tellurium and selenium in rats. J Inorg Biochem 102(7):1507–1513.  https://doi.org/10.1016/j.jinorgbio.2008.01.012CrossRefPubMedGoogle Scholar
  46. 46.
    Cabri LJ (1965) Phase relations in the Au-Ag-Te systems and their mineralogical significance. Econ Geol 60(8):1569–1606.  https://doi.org/10.2113/gsecongeo.60.8.1569CrossRefGoogle Scholar
  47. 47.
    Zhang Q, Malliakas CD, Kanatzidis MG (2009) {[Ga(En) 3] 2 (Ge 2 Te 15)} n: a polymeric semiconducting polytelluride with boat-shaped Te 8 4− rings and cross-shaped Te 5 6− units. Inorg Chem 48(23):10910–10912.  https://doi.org/10.1021/ic9019074CrossRefPubMedGoogle Scholar
  48. 48.
    Dana JD, Dana ES, Gaines RV, Dana JD (1997) Dana’s new mineralogy : the system of mineralogy of James Dwight Dana and Edward Salisbury Dana. Wiley, Hoboken. http://webmineral.com/danaclass.shtml#.XFYjLlxKiUkGoogle Scholar
  49. 49.
    Getman FH (1933) A study of the tellurium electrode. Trans Electrochem Soc 64(1):201.  https://doi.org/10.1149/1.3504515CrossRefGoogle Scholar
  50. 50.
    Lid DR (2006) CRC handbook of chemistry and physics. American Chemical Society, Boca Raton.  https://doi.org/10.1021/JA069813ZCrossRefGoogle Scholar
  51. 51.
    Bruère MA (1891) Direct action of hydrogen sulphide, hydrogen selenide, and hydrogen telluride on haemoglobin. J Anat Physiol 26(Pt 1):62–75. http://www.ncbi.nlm.nih.gov/pubmed/17231959.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York. https://books.google.com/books/about/Handbook_of_Inorganic_Chemicals.html?id=Xqj-TTzkvTECGoogle Scholar
  53. 53.
    Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Butterworth-Heinemann, OxfordGoogle Scholar
  54. 54.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (n.d.) Advanced inorganic chemistry. Wiley, New YorkGoogle Scholar
  55. 55.
    Mikhaylov AA, Medvedev AG, Churakov AV, Grishanov DA, Prikhodchenko PV, Lev O (2016) Peroxide coordination of tellurium in aqueous solutions. Chem Eur J 22(9):2980–2986.  https://doi.org/10.1002/chem.201503614CrossRefPubMedGoogle Scholar
  56. 56.
    Laitinen RS, Maaninen A, Pietikäinen J (1998) Selenium- and tellurium-containing chalcogen nitrides. Phosphorus Sulfur Silicon Relat Elem 136(1):397–412.  https://doi.org/10.1080/10426509808545966CrossRefGoogle Scholar
  57. 57.
    Massa W, Lau C, Möhlen M, Neumüller B, Dehnicke K (1998) [Te6N8(TeCl4)4]—tellurium nitride stabilized by tellurium tetrachloride. Angew Chem Int Ed 37(20):2840–2842.  https://doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2840::AID-ANIE2840>3.0.CO;2-NCrossRefGoogle Scholar
  58. 58.
    Eagleson M (1994) Concise encyclopedia chemistry. Walter de Gruyter, Berlin. https://books.google.com/books/about/Concise_Encyclopedia_Chemistry.html?id=Owuv-c9L_IMCGoogle Scholar
  59. 59.
    Laitinen RS, Oilunkaniemi R (2011) Tellurium: inorganic chemistry based in part on the article tellurium: inorganic chemistry by William R. McWhinnie which appeared in the Encyclopedia of Inorganic Chemistry, First Edition. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, Chichester.  https://doi.org/10.1002/9781119951438.eibc0222CrossRefGoogle Scholar
  60. 60.
    Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic Press, San Diego. https://northeastern.on.worldcat.org/search?queryString=no%3A+48056955#/oclc/48056955Google Scholar
  61. 61.
    Devillanova F, Du Mont W-W (2013) Handbook of chalcogen chemistry, vol 1. Royal Society of Chemistry, Cambridge.  https://doi.org/10.1039/9781849737456CrossRefGoogle Scholar
  62. 62.
    Kniep R, Mootz D, Rabenau A (1976) Zur Kenntnis Der Subhalogenide Des Tellurs. Zeitschrift Fr Anorganische Und Allgemeine Chemie 422(1):17–38.  https://doi.org/10.1002/zaac.19764220103CrossRefGoogle Scholar
  63. 63.
    Binnewies M, Milke E (2002) Thermochemical data of elements and compounds. Wiley, HobokenCrossRefGoogle Scholar
  64. 64.
    Petragnani N, Comasseto JV (1991) Tellurium reagents in organic synthesis; recent advances. Part 1. Synthesis 1991(10):793–817.  https://doi.org/10.1055/s-1991-26577CrossRefGoogle Scholar
  65. 65.
    King RB (1977) Inorganic chemistry of the main-group elements. In: Addison CC (ed) Inorganic chemistry of the main-group elements, vol 4. Royal Society of Chemistry, Cambridge.  https://doi.org/10.1039/9781847556400CrossRefGoogle Scholar
  66. 66.
    Petragnani N (2007) Tellurium in organic synthesis. Academic Press, LondonCrossRefGoogle Scholar
  67. 67.
    Sadekov ID, Zakharov AV (1999) Stable tellurols and their metal derivatives. Russ Chem Rev 68(11):909–923. https://doi.org/RC990909CrossRefGoogle Scholar
  68. 68.
    Torubaev Y, Pasynskii A, Mathur P (2012) Organotellurium halides: new ligands for transition metal complexes. Coord Chem Rev 256(5–8):709–721.  https://doi.org/10.1016/J.CCR.2011.11.011CrossRefGoogle Scholar
  69. 69.
    Engman L, Kandra T, Gallegos A, Williams R, Powis G (2000) Water-soluble organotellurium compounds inhibit thioredoxin reductase and the growth of human cancer cells. Anticancer Drug Des 15(5):323–330. http://www.ncbi.nlm.nih.gov/pubmed/11354308PubMedGoogle Scholar
  70. 70.
    Alessandrello A, Arnaboldi C, Brofferio C, Capelli S, Cremonesi O, Fiorini E, Nucciotti A, et al (2002) New limits on naturally occurring electron capture of 123Te.  https://doi.org/10.1103/PhysRevC.67.014323
  71. 71.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE et al (2016) Atomic weights of the elements 2013 (IUPAC technical report). Pure Appl Chem 88(3):265–291.  https://doi.org/10.1515/pac-2015-0305CrossRefGoogle Scholar
  72. 72.
    Magill J (2003) The universal nuclide chart. In: Nuclides.Net. Springer, Berlin, pp 197–207.  https://doi.org/10.1007/978-3-642-55764-4_9.CrossRefGoogle Scholar
  73. 73.
    Kim S, Thiessen PA, Bolton EE, Chen J, Gang F, Gindulyte A, Han L et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213.  https://doi.org/10.1093/nar/gkv951CrossRefPubMedGoogle Scholar
  74. 74.
    Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U (2015) Structural and photoconductivity properties of tellurium/PMMA films. Nanoscale Res Lett 10(1):313.  https://doi.org/10.1186/s11671-015-1007-z.CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Makuei FM, Senanayake G (2018) Extraction of tellurium from lead and copper bearing feed materials and interim metallurgical products—a short review. Miner Eng 115:79–87.  https://doi.org/10.1016/J.MINENG.2017.10.013.CrossRefGoogle Scholar
  76. 76.
    Wang S (2011) Tellurium, its resourcefulness and recovery. JOM 63(8):90–93.  https://doi.org/10.1007/s11837-011-0146-7CrossRefGoogle Scholar
  77. 77.
    Ramos-Ruiz A, Field JA, Wilkening JV, Sierra-Alvarez R (2016) Recovery of elemental tellurium nanoparticles by the reduction of tellurium oxyanions in a methanogenic microbial consortium. Environ Sci Technol 50(3):1492–1500.  https://doi.org/10.1021/acs.est.5b04074CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hait J, Jana RK, Kumar V, Sanyal SK (2002) Some studies on sulfuric acid leaching of anode slime with additives. Ind Eng Chem Res 41(25):6593–6599.  https://doi.org/10.1021/IE020239JCrossRefGoogle Scholar
  79. 79.
    Wang S, Cui W, Zhang G, Zhang L, Peng J (2017b) Ultra fast ultrasound-assisted decopperization from copper anode slime. Ultrason Sonochem 36:20–26.  https://doi.org/10.1016/J.ULTSONCH.2016.11.013CrossRefPubMedGoogle Scholar
  80. 80.
    Yang T, Zhu P, Liu W, Chen L, Zhang D (2017b) Recovery of tin from metal powders of waste printed circuit boards. Waste Manag 68:449–457.  https://doi.org/10.1016/j.wasman.2017.06.019CrossRefPubMedGoogle Scholar
  81. 81.
    Giles GI, Fry FH, Tasker KM, Holme AL, Peers C, Green KN, Klotz L-O, Sies H, Jacob C (2003a) Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential. Org Biomol Chem 1(23):4317.  https://doi.org/10.1039/b308117fCrossRefPubMedGoogle Scholar
  82. 82.
    Anne M-L, Keirsse J, Nazabal V, Hyodo K, Inoue S, Boussard-Pledel C, Lhermite H et al (2009) Chalcogenide glass optical waveguides for infrared biosensing. Sensors 9(9):7398–7411.  https://doi.org/10.3390/s90907398CrossRefPubMedGoogle Scholar
  83. 83.
    Li P, Zhang Y, Chen Z, Gao P, Wu T, Wang L-M (2017) Relaxation dynamics in the strong chalcogenide glass-former of Ge22Se78. Sci Rep 7(1):40547.  https://doi.org/10.1038/srep40547CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24(46):6125–6135.  https://doi.org/10.1002/adma.201202919CrossRefPubMedGoogle Scholar
  85. 85.
    Ramos-Ruiz A, Wilkening JV, Field JA, Sierra-Alvarez R (2017) Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. J Hazard Mater 336:57–64.  https://doi.org/10.1016/j.jhazmat.2017.04.052CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, Yagi T, Tominaga J (2011) Interfacial phase-change memory. Nat Nanotechnol 6(8):501–505.  https://doi.org/10.1038/nnano.2011.96CrossRefPubMedGoogle Scholar
  87. 87.
    Yuan QL, Yin HY, Nie QL (2013) Nanostructured tellurium semiconductor: from nanoparticles to nanorods. J Exp Nanosci 8(7–8):931–936.  https://doi.org/10.1080/17458080.2011.620021CrossRefGoogle Scholar
  88. 88.
    Ayre J (2013) First solar reports largest quarterly decline in CdTe module cost per-watt since 2007. Solar Love. https://cleantechnica.com/2013/11/07/first-solar-reports-largest-quarterly-decline-cdte-module-cost-per-watt-since-2007/
  89. 89.
    Todorov TK, Singh S, Bishop DM, Gunawan O, Lee YS, Gershon TS, Brew KW, Antunez PD, Haight R (2017) Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat Commun 8(1):682.  https://doi.org/10.1038/s41467-017-00582-9CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yarema MC, Curry SC (2005) Acute tellurium toxicity from ingestion of metal-oxidizing solutions. Pediatrics 116(2):e319–e321.  https://doi.org/10.1542/peds.2005-0172CrossRefPubMedGoogle Scholar
  91. 91.
    Yan Y, Zhang J, Ren L, Tang C (2016) Metal-containing and related polymers for biomedical applications. Chem Soc Rev 45(19):5232–5263.  https://doi.org/10.1039/c6cs00026fCrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Shieh M, Ho C-H, Sheu W-S, Chen B-G, Chu Y-Y, Miu C-Y, Liu H-L, Shen C-C (2008) Semiconducting tellurium−iron−copper carbonyl polymers. J Am Chem Soc 130(43):14114–14116.  https://doi.org/10.1021/ja8065623CrossRefPubMedGoogle Scholar
  93. 93.
    Jiang S, Sheng J, Huang Z (2011) Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides. Curr Protoc Nucleic Acid Chem 1:1.25.1–1.25.16. Hoboken: John Wiley & Sons, Inc.  https://doi.org/10.1002/0471142700.nc0125s47.CrossRefGoogle Scholar
  94. 94.
    Maurya D, Sardarinejad A, Alameh K, Maurya DK, Sardarinejad A, Alameh K (2014) Recent developments in R.F. magnetron sputtered thin films for PH sensing applications—an overview. Coatings 4(4):756–771.  https://doi.org/10.3390/coatings4040756CrossRefGoogle Scholar
  95. 95.
    Gurunathan S, Kim J-H (2016) Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine 11:1927–1945.  https://doi.org/10.2147/IJN.S105264CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Liu J-W, Xu J, Hu W, Yang J-L, Yu S-H (2016) Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2(3):167–170.  https://doi.org/10.1002/cnma.201500206CrossRefGoogle Scholar
  97. 97.
    He W, Krejci A, Lin J, Osmulski ME, Dickerson JH (2011) A facile synthesis of Te nanoparticles with binary size distribution by green chemistry. Nanoscale 3(4):1523.  https://doi.org/10.1039/c1nr10025dCrossRefPubMedGoogle Scholar
  98. 98.
    Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113(1):011301.  https://doi.org/10.1063/1.4754271CrossRefGoogle Scholar
  99. 99.
    Tsai H-W, Yaghoubi A, Chan T-C, Wang C-C, Liu W-T, Liao C-N, Lu S-Y, Chen L-J, Chueh Y-L (2015) Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas–solid transformation and their applications as supercapacitor electrodes for p-Doping of graphene transistors. Nanoscale 7(17):7535–7539.  https://doi.org/10.1039/C5NR00876JCrossRefPubMedGoogle Scholar
  100. 100.
    Jiang Z-Y, Xie Z-X, Zhang X-H, Xie S-Y, Huang R-B, Zheng L-S (2004) Synthesis of α-tellurium dioxide nanorods from elemental tellurium by laser ablation. Inorg Chem Commun 7(2):179–181.  https://doi.org/10.1016/J.INOCHE.2003.10.037CrossRefGoogle Scholar
  101. 101.
    Arab F, Mousavi-Kamazani M, Salavati-Niasari M (2017) Facile sonochemical synthesis of tellurium and tellurium dioxide nanoparticles: reducing Te(IV) to Te via ultrasonic irradiation in methanol. Ultrason Sonochem 37:335–343.  https://doi.org/10.1016/j.ultsonch.2017.01.026CrossRefPubMedGoogle Scholar
  102. 102.
    Mousavi-Kamazani M, Rahmatolahzadeh R, Shobeiri SA, Beshkar F (2017) Sonochemical synthesis, formation mechanism, and solar cell application of tellurium nanoparticles. Ultrason Sonochem 39:233–239.  https://doi.org/10.1016/J.ULTSONCH.2017.04.031CrossRefPubMedGoogle Scholar
  103. 103.
    Zhang A, Zheng G, Lieber CM (2016a) Nanowires. Building blocks for nanoscience and nanotechnology. Springer, Basel. http://www.springer.com/series/3705CrossRefGoogle Scholar
  104. 104.
    Mayers B, Xia Y (2002) One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J Mater Chem 12(6):1875–1881.  https://doi.org/10.1039/b201058eCrossRefGoogle Scholar
  105. 105.
    Qian H-S, Yu S-H, Gong J-Y, Luo L-B, Fei L-f (2006) High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22(8):3830–3835.  https://doi.org/10.1021/la053021lCrossRefPubMedGoogle Scholar
  106. 106.
    Lu Q, Gao F, Komarneni S (2004) Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv Mater 16(18):1629–1632.  https://doi.org/10.1002/adma.200400319CrossRefGoogle Scholar
  107. 107.
    Huang W, Wu H, Li X, Chen T (2016) Facile one-pot synthesis of tellurium nanorods as antioxidant and anticancer agents. Chem Asian J 11(16):2301–2311.  https://doi.org/10.1002/asia.201600757CrossRefPubMedGoogle Scholar
  108. 108.
    Xi G, Peng Y, Yu W, Qian Y (2005) Synthesis, characterization, and growth mechanism of tellurium nanotubes. Cryst Growth Des 5(1):325–328.  https://doi.org/10.1021/CG049867PCrossRefGoogle Scholar
  109. 109.
    Song J-M, Lin Y-Z, Zhan Y-J, Tian Y-C, Liu G, Yu S-H (2008) Superlong high-quality tellurium nanotubes: synthesis, characterization, and optical property. Cryst Growth Des 8(6):1902–1908.  https://doi.org/10.1021/cg701125kCrossRefGoogle Scholar
  110. 110.
    Liu T, Zhang G, Su X, Chen X, Wang D, Qin J (2007) Tellurium nanotubes synthesized with microwave-assisted monosaccharide reduction method. J Nanosci Nanotechnol 7(7):2500–2505. http://www.ncbi.nlm.nih.gov/pubmed/17663271CrossRefGoogle Scholar
  111. 111.
    Qun W, Li G-D, Liu Y-L, Xu S, Wang K-J, Chen J-S (2007) Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J Phys Chem C 111(35):12926–12932.  https://doi.org/10.1021/JP073902WCrossRefGoogle Scholar
  112. 112.
    Wan B, Hu C, Liu H, Chen X, Xi Y, He X (2010) Glassy state lead tellurite nanobelts: synthesis and properties. Nanoscale Res Lett 5(8):1344–1350.  https://doi.org/10.1007/s11671-010-9651-9CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669.  https://doi.org/10.1126/science.1102896.CrossRefPubMedGoogle Scholar
  114. 114.
    Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118(13):6409–6455.  https://doi.org/10.1021/acs.chemrev.7b00727CrossRefPubMedGoogle Scholar
  115. 115.
    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12(7):3507–3511.  https://doi.org/10.1021/nl301047gCrossRefPubMedGoogle Scholar
  116. 116.
    Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous Germanene layer on Al(111). Nano Lett 15(4):2510–2516.  https://doi.org/10.1021/acs.nanolett.5b00085CrossRefPubMedGoogle Scholar
  117. 117.
    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A, Le Lay G (2018) Large area planar stanene epitaxially grown on Ag(1 1 1). 2D Mater 5(2):025002.  https://doi.org/10.1088/2053-1583/aa9ea0CrossRefGoogle Scholar
  118. 118.
    Mannix AJ, Zhou X-F, Kiraly B, Wood JD, Alducin D, Myers BD, Liu X et al (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267):1513–1516.  https://doi.org/10.1126/science.aad1080CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Martínez-Periñán E, Down MP, Gibaja C, Lorenzo E, Zamora F, Banks CE (2018) Antimonene: a novel 2D nanomaterial for supercapacitor applications. Adv Energy Mater 8(11):1702606.  https://doi.org/10.1002/aenm.201702606CrossRefGoogle Scholar
  120. 120.
    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4):4033–4041.  https://doi.org/10.1021/nn501226zCrossRefPubMedGoogle Scholar
  121. 121.
    Zhang JL, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R et al (2016b) Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett 16(8):4903–4908.  https://doi.org/10.1021/acs.nanolett.6b01459CrossRefPubMedGoogle Scholar
  122. 122.
    Xian L, Pérez Paz A, Bianco E, Ajayan PM, Rubio A (2017) Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater 4(4):041003.  https://doi.org/10.1088/2053-1583/aa8418CrossRefGoogle Scholar
  123. 123.
    Sharma S, Singh N, Schwingenschlögl U (2018) Two-dimensional tellurene as excellent thermoelectric material. ACS Appl Energ Mater 1(5):1950–1954.  https://doi.org/10.1021/acsaem.8b00032CrossRefGoogle Scholar
  124. 124.
    Wang Q, Safdar M, Xu K, Mirza M, Wang Z, He J (2014) Van Der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7):7497–7505.  https://doi.org/10.1021/nn5028104CrossRefPubMedGoogle Scholar
  125. 125.
    Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W, Guo J (2017b) Epitaxial growth and band structure of Te film on graphene. Nano Lett 17(8):4619–4623.  https://doi.org/10.1021/acs.nanolett.7b01029CrossRefPubMedGoogle Scholar
  126. 126.
    Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y et al (2018) Field-effect transistors made from solution-grown two-dimensional tellurene. Nature Electron 1(4):228–236.  https://doi.org/10.1038/s41928-018-0058-4CrossRefGoogle Scholar
  127. 127.
    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M (2018) Three-dimensional Bi2Te3 networks of interconnected nanowires: synthesis and optimization. Nanomaterials 8(5).  https://doi.org/10.3390/nano8050345
  128. 128.
    Ben-Moshe A, Wolf SG, Sadan MB, Houben L, Fan Z, Govorov AO, Markovich G (2014) Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat Commun 5(1):4302.  https://doi.org/10.1038/ncomms5302CrossRefPubMedGoogle Scholar
  129. 129.
    Feng W, Kim J-Y, Wang X, Calcaterra HA, Qu Z, Meshi L, Kotov NA (2017) Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci Adv 3(3):e1601159.  https://doi.org/10.1126/sciadv.1601159CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Mayers B, Gates B, Yin Y, Xia Y (2001) Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv Mater 13(18):1380–1384.  https://doi.org/10.1002/1521-4095(200109)13:18<1380::AID-ADMA1380>3.0.CO;2-WCrossRefGoogle Scholar
  131. 131.
    Yang Y, Wang K, Liang H-W, Liu G-Q, Feng M, Xu L, Liu J-W, Wang J-L, Yu S-H (2015) A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation. Sci Adv 1(10):e1500714.  https://doi.org/10.1126/sciadv.1500714CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    He Z, Shu-Hong Y (2005) Large scale synthesis of tellurium nanoribbons in tetraethylene pentamine aqueous solution and the stability of tellurium nanoribbons in ethanol and water. J Phys Chem B 109(48):22740–22745.  https://doi.org/10.1021/JP0544484CrossRefPubMedGoogle Scholar
  133. 133.
    Zhu H, Zhang H, Liang J, Rao G, Li J, Liu G, Du Z, Fan H, Luo J (2011) Controlled synthesis of tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications. J Phys Chem C 115(14):6375–6380.  https://doi.org/10.1021/jp200316yCrossRefGoogle Scholar
  134. 134.
    Wang D, Zhao Y, Jin H, Zhuang J, Zhang W, Wang S, Wang J (2013b) Synthesis of Au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic. ACS Appl Mater Interfaces 5(12):5733–5740.  https://doi.org/10.1021/am401205wCrossRefPubMedGoogle Scholar
  135. 135.
    Zonaro E, Lampis S, Turner RJ, Junaid S, Qazi S, Vallini G (2015) Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol 6:584.  https://doi.org/10.3389/fmicb.2015.00584CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Abo Elsoud MM, Al-Hagar OEA, Abdelkhalek ES, Sidkey NM (2018) Synthesis and investigations on tellurium myconanoparticles. Biotechnol Rep 18:e00247. https://linkinghub.elsevier.com/retrieve/pii/S2215017X17303454CrossRefGoogle Scholar
  137. 137.
    Medina-Cruz D, González MU, Tien-Street W, Castro MF, Crua AV, Fernández I, Martínez L, Huttel Y, Webster TJ, García-Martín JM (2019) Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. Nanomedicine 17:36–46.  https://doi.org/10.1016/J.NANO.2018.12.009CrossRefPubMedGoogle Scholar
  138. 138.
    Palik ED (1998) Handbook of optical constants of solids. Academic Press, Cambridge. https://www.sciencedirect.com/book/9780125444156/handbook-of-optical-constants-of-solidsGoogle Scholar
  139. 139.
    Bottom VE (1952) The hall effect and electrical resistivity of tellurium. Science 115(2995):570–571.  https://doi.org/10.1126/science.115.2995.570.CrossRefPubMedGoogle Scholar
  140. 140.
    Blackband WT (1951) A photo-conductive effect in tellurium film. Nature 168(4277):704.  https://doi.org/10.1038/168704a0CrossRefGoogle Scholar
  141. 141.
    Liu J-W, Zhu J-H, Zhang C-L, Liang H-W, Yu S-H (2010) Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J Am Chem Soc 132(26):8945–8952.  https://doi.org/10.1021/ja910871sCrossRefPubMedGoogle Scholar
  142. 142.
    Hackney Z, Mair L, Skinner K, Washburn S (2010) Photoconductive and polarization properties of individual CdTe nanowires. Mater Lett 64(18):2016–2018.  https://doi.org/10.1016/j.matlet.2010.06.032CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Zhou F, Chen J, Wang Y, Zhang J, Wei X, Luo R, Wang G, Wang R (2017) Remarkable catalytic activity of electrochemically dealloyed platinum–tellurium nanoparticles towards formic acid electro-oxidation. Int J Hydrog Energy 42(26):16489–16494.  https://doi.org/10.1016/J.IJHYDENE.2017.05.162CrossRefGoogle Scholar
  144. 144.
    Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A Mater Sci Process 70(4):365–376.  https://doi.org/10.1007/s003390051050CrossRefGoogle Scholar
  145. 145.
    Sotiropoulou S, Sierra-Sastre Y, Mark SS, Batt CA (2008) Biotemplated nanostructured materials. Chem Mater 20(3):821–834.  https://doi.org/10.1021/cm702152aCrossRefGoogle Scholar
  146. 146.
    Yang H, Finefrock SW, Albarracin Caballero JD, Wu Y (2014) Environmentally benign synthesis of ultrathin metal telluride nanowires. J Am Chem Soc 136(29):10242–10245.  https://doi.org/10.1021/ja505304vCrossRefPubMedGoogle Scholar
  147. 147.
    Samal AK, Pradeep T (2010) Pt 3 Te 4 nanoparticles from tellurium nanowires. Langmuir 26(24):19136–19141.  https://doi.org/10.1021/la103466jCrossRefPubMedGoogle Scholar
  148. 148.
    Fernández-Lodeiro J, Rodríguez-González B, Santos HM, Bertolo E, Luis Capelo J, Santos AAD, Lodeiro C (2016) Unraveling the organotellurium chemistry applied to the synthesis of gold nanomaterials. ACS Omega 1(6):1314–1325.  https://doi.org/10.1021/acsomega.6b00309CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Fernández-Lodeiro J, Rodríguez-Gónzalez B, Novio F, Fernández-Lodeiro A, Ruiz-Molina D, Capelo JL, dos Santos AA, Lodeiro C (2017) Synthesis and characterization of PtTe2 multi-crystallite nanoparticles using organotellurium nanocomposites. Sci Rep 7(1):9889.  https://doi.org/10.1038/s41598-017-10239-8CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Royer D, Dieulesaint E (1979) Elastic and piezoelectric constants of trigonal selenium and tellurium crystals. J Appl Phys 50(6):4042–4045.  https://doi.org/10.1063/1.326485CrossRefGoogle Scholar
  151. 151.
    Lee TI, Lee S, Lee E, Sohn S, Lee Y, Lee S, Moon G et al (2013) High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv Mater 25(21):2920–2925.  https://doi.org/10.1002/adma.201300657CrossRefPubMedGoogle Scholar
  152. 152.
    Liang T, Zha J-W, Wang D-r, Dang Z-M (2014b) Remarkable piezoresistance effect on the flexible strain sensor based on a single ultralong tellurium micrometre wire. J Phys D Appl Phys 47(50):505103.  https://doi.org/10.1088/0022-3727/47/50/505103CrossRefGoogle Scholar
  153. 153.
    He W, Van Ngoc H, Qian YT, Hwang JS, Yan YP, Choi H, Kang DJ (2017b) Synthesis of ultra-thin tellurium nanoflakes on textiles for high-performance flexible and wearable nanogenerators. Appl Surf Sci 392:1055–1061.  https://doi.org/10.1016/J.APSUSC.2016.09.157CrossRefGoogle Scholar
  154. 154.
    Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108(9):3443–3480.  https://doi.org/10.1021/cr068000qCrossRefPubMedGoogle Scholar
  155. 155.
    Wang C-W, Lin Z-H, Roy P, Chang H-T (2013a) Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced raman scattering. Front Chem 1:20.  https://doi.org/10.3389/fchem.2013.00020CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Khayat A, Dencker L (1984) Interactions between tellurium and mercury in murine lung and other organs after metallic mercury inhalation: a comparison with selenium. Chem Biol Interact 50(2):123–133. http://www.ncbi.nlm.nih.gov/pubmed/6744461CrossRefGoogle Scholar
  157. 157.
    Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127.  https://doi.org/10.1039/c3cs00009eCrossRefPubMedGoogle Scholar
  158. 158.
    He J, Lv W, Chen Y, Wen K, Xu C, Zhang W, Li Y, Qin W, He W (2017a) Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries. ACS Nano 11(8):8144–8152.  https://doi.org/10.1021/acsnano.7b03057.CrossRefPubMedGoogle Scholar
  159. 159.
    Zhong B, Zhang Y, Li W, Chen Z, Cui J, Li W, Xie Y, Hao Q, He Q (2014) High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu 1.94 Al 0.02 Se. Appl Phys Lett 105(12):123902.  https://doi.org/10.1063/1.4896520CrossRefGoogle Scholar
  160. 160.
    Seo J-U, Seong G-K, Park C-M (2015) Te/C nanocomposites for Li-Te secondary batteries. Sci Rep 5(1):7969.  https://doi.org/10.1038/srep07969CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Xu J, Xin S, Liu J-W, Wang J-L, Lei Y, Yu S-H (2016) Elastic carbon nanotube aerogel meets tellurium nanowires: a binder- and collector-free electrode for Li-Te batteries. Adv Funct Mater 26(21):3580–3588.  https://doi.org/10.1002/adfm.201600640CrossRefGoogle Scholar
  162. 162.
    Zhang M, Su HC, Rheem Y, Hangarter CM, Myung NV (2012) A rapid room-temperature NO2 sensor based on tellurium–SWNT hybrid nanostructures. J Phys Chem C 116(37):20067–20074.  https://doi.org/10.1021/jp305393cCrossRefGoogle Scholar
  163. 163.
    Tsiulyanu D, Marian S, Liess H-D (2002) Sensing properties of tellurium based thin films to propylamine and carbon oxide. Sensors Actuators B Chem 85(3):232–238.  https://doi.org/10.1016/S0925-4005(02)00113-2CrossRefGoogle Scholar
  164. 164.
    Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, Langenberg E et al (2015) Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat Nanotechnol 10(8):661–665.  https://doi.org/10.1038/nnano.2015.108CrossRefPubMedGoogle Scholar
  165. 165.
    Sen S, Bhandarkar V, Muthe KP, Roy M, Deshpande SK, Aiyer RC, Gupta SK, Yakhmi JV, Sahni VC (2006) Highly sensitive hydrogen sulphide sensors operable at room temperature. Sensors Actuators B Chem 115(1):270–275.  https://doi.org/10.1016/J.SNB.2005.09.013CrossRefGoogle Scholar
  166. 166.
    Tsiulyanu D, Tsiulyanu A, Liess H-D, Eisele I (2005) Characterization of tellurium-based films for NO2 detection. Thin Solid Films 485(1–2):252–256.  https://doi.org/10.1016/J.TSF.2005.03.045CrossRefGoogle Scholar
  167. 167.
    Park H, Jung H, Zhang M, Chang CH, Ndifor-Angwafor NG, Choa Y, Myung NV (2013) Branched tellurium hollow nanofibers by galvanic displacement reaction and their sensing performance toward nitrogen dioxide. Nanoscale 5(7):3058.  https://doi.org/10.1039/c3nr00060eCrossRefPubMedGoogle Scholar
  168. 168.
    Kumar V, Shashwati S, Sharma M, Muthe KP, Jagannath N, Gaur K, Gupta SK (2009) Tellurium nano-structure based NO gas sensor. J Nanosci Nanotechnol 9(9):5278–5282. http://www.ncbi.nlm.nih.gov/pubmed/19928213CrossRefGoogle Scholar
  169. 169.
    Sen S, Muthe KP, Niraj J, Gadkari SC, Gupta SK, Jagannath, Roy M, Deshpande SK, Yakhmi JV (2004) Room temperature operating ammonia sensor based on tellurium thin films. Sensors Actuators B Chem 98(2–3):154–159.  https://doi.org/10.1016/J.SNB.2003.10.004CrossRefGoogle Scholar
  170. 170.
    Chen X, Lou Y, Dayal S, Qiu X, Krolicki R, Burda C, Zhao C, Becker J (2005) Doped semiconductor nanomaterials. J Nanosci Nanotechnol 5(9):1408–1420. http://www.ncbi.nlm.nih.gov/pubmed/16193954CrossRefGoogle Scholar
  171. 171.
    Sznopek JL (2006) Drivers of U.S. mineral demand. http://www.usgs.gov/pubprod
  172. 172.
    Guo WX, Shu D, Chen HY, Li AJ, Wang H, Xiao GM, Dou CL et al (2009) Study on the structure and property of lead tellurium alloy as the positive grid of lead-acid batteries. J Alloys Compd 475(1–2):102–109.  https://doi.org/10.1016/J.JALLCOM.2008.08.011CrossRefGoogle Scholar
  173. 173.
    Liang T, Su X, Yan Y, Zheng G, Zhang Q, Chi H, Tang X, Uher C (2014a) Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. J Mater Chem A 2(42):17914–17918.  https://doi.org/10.1039/C4TA02780ACrossRefGoogle Scholar
  174. 174.
    Avidan A, Oron D (2008) Large blue shift of the biexciton state in tellurium doped CdSe colloidal quantum dots. Nano Lett 8(8):2384–2387.  https://doi.org/10.1021/nl801241mCrossRefPubMedGoogle Scholar
  175. 175.
    Tang K, Gu S, Wu K, Zhu S, Ye J, Zhang R, Zheng Y (2010) Tellurium assisted realization of P-type N-doped ZnO. Appl Phys Lett 96(24):242101.  https://doi.org/10.1063/1.3453658CrossRefGoogle Scholar
  176. 176.
    Zhang Z, Khurram M, Sun Z, Yan Q (2018) Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg Chem 57(7):4098–4103.  https://doi.org/10.1021/acs.inorgchem.8b00278CrossRefPubMedGoogle Scholar
  177. 177.
    Qiu PF, Wang XB, Zhang TS, Shi X, Chen LD (2015) Thermoelectric properties of Te-doped ternary CuAgSe compounds. J Mater Chem A 3(44):22454–22461.  https://doi.org/10.1039/C5TA06780DCrossRefGoogle Scholar
  178. 178.
    Park W-D, Tanioka K (2014) Tellurium Doping effect in avalanche-mode amorphous selenium photoconductive film. Appl Phys Lett 105(19):192106.  https://doi.org/10.1063/1.4902011CrossRefGoogle Scholar
  179. 179.
    Tao H, Sun X, Back S, Han Z, Zhu Q, Robertson AW, Ma T et al (2018) Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO 2 to CO. Chem Sci 9(2):483–487.  https://doi.org/10.1039/C7SC03018ECrossRefPubMedGoogle Scholar
  180. 180.
    Ogra Y (2009) Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies. Anal Sci 25(10):1189–1195.  https://doi.org/10.2116/analsci.25.1189CrossRefPubMedGoogle Scholar
  181. 181.
    Olm E, Fernandes AP, Hebert C, Rundlöf A-K, Larsen EH, Danielsson O, Björnstedt M (2009) Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci U S A 106(27):11400–11405.  https://doi.org/10.1073/pnas.0902204106CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Bajaj M, Winter J (2014) Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Microb Cell Factories 13:168.  https://doi.org/10.1186/s12934-014-0168-2.CrossRefGoogle Scholar
  183. 183.
    Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73(7):2135–2143.  https://doi.org/10.1128/AEM.02558-06CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018) Assembly, growth and conductive properties of tellurium nanorods produced by rhodococcus aetherivorans BCP1. Sci Rep 8(1):3923.  https://doi.org/10.1038/s41598-018-22320-xCrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103(1):1–25.  https://doi.org/10.1021/cr010210+CrossRefPubMedGoogle Scholar
  186. 186.
    Ramadan SE, Razak AA, Ragab AM, el-Meleigy M (1989) Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. Biol Trace Elem Res 20(3):225–232. http://www.ncbi.nlm.nih.gov/pubmed/2484755CrossRefGoogle Scholar
  187. 187.
    Cowgill UM (1988) The tellurium content of vegetation. Biol Trace Elem Res 17:43–67. http://www.ncbi.nlm.nih.gov/pubmed/2484368CrossRefGoogle Scholar
  188. 188.
    Anan Y, Yoshida M, Hasegawa S, Katai R, Tokumoto M, Ouerdane L, Łobiński R, Ogra Y (2013) Speciation and identification of tellurium-containing metabolites in garlic, Allium Sativum. Metallomics 5(9):1215.  https://doi.org/10.1039/c3mt00108cCrossRefPubMedGoogle Scholar
  189. 189.
    Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6(4):189–213.  https://doi.org/10.1007/s10311-008-0159-9CrossRefGoogle Scholar
  190. 190.
    Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6286.  https://doi.org/10.1021/cr0406559CrossRefPubMedGoogle Scholar
  191. 191.
    Nogueira CW, Rotta LN, Perry ML, Souza DO, Teixeira da Rocha JB (2001) Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res 906(1–2):157–163.  https://doi.org/10.1016/S0006-8993(01)02165-5CrossRefPubMedGoogle Scholar
  192. 192.
    Vij P, Hardej D (2012) Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ Toxicol Pharmacol 34(3):768–782.  https://doi.org/10.1016/j.etap.2012.09.009CrossRefPubMedGoogle Scholar
  193. 193.
    Garberg P, Engman L, Tolmachev V, Lundqvist H, Gerdes RG, Cotgreave IA (1999) Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase. Int J Biochem Cell Biol 31(2):291–301.  https://doi.org/10.1016/S1357-2725(98)00113-7CrossRefPubMedGoogle Scholar
  194. 194.
    Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361.  https://doi.org/10.1038/nri3423CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Brenneisen P, Reichert A (2018) Nanotherapy and reactive oxygen species (ROS) in cancer: a novel perspective. Antioxidants 7(2):31.  https://doi.org/10.3390/antiox7020031CrossRefPubMedCentralGoogle Scholar
  196. 196.
    Kim KS, Lee D, Song CG, Kang PM (2015) Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine 10(17):2709–2723.  https://doi.org/10.2217/nnm.15.108CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Chou T-M, Ke Y-Y, Tsao Y-H, Li Y-C, Lin Z-H (2016) Fabrication of Te and Te-Au nanowires-based carbon fiber fabrics for antibacterial applications. Int J Environ Res Public Health 13(2):202.  https://doi.org/10.3390/ijerph13020202CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Feldmann J, Hirner AV (1995) Occurrence of volatile metal and metalloid species in landfill and sewage gases. Int J Environ Anal Chem 60(2–4):339–359.  https://doi.org/10.1080/03067319508042888CrossRefGoogle Scholar
  199. 199.
    Kron T, Hansen C, Werner E (1991) Renal excretion of tellurium after peroral administration of tellurium in different forms to healthy human volunteers. J Trace Elem Electrolytes Health Dis 5(4):239–244. http://www.ncbi.nlm.nih.gov/pubmed/1822332PubMedGoogle Scholar
  200. 200.
    Taylor A (1996) Biochemistry of tellurium. Biol Trace Elem Res 55(3):231–239.  https://doi.org/10.1007/BF02785282CrossRefPubMedGoogle Scholar
  201. 201.
    Brown CD, Cruz DM, Roy AK, Webster TJ (2018) Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties. J Nanopart Res 20(9):254.  https://doi.org/10.1007/s11051-018-4354-8CrossRefGoogle Scholar
  202. 202.
    Na N, Liu L, Taes YEC, Zhang C, Huang B, Liu Y, Ma L, Ouyang J (2010) Direct CdTe quantum-dot-based fluorescence imaging of human serum proteins. Small 6(15):1589–1592.  https://doi.org/10.1002/smll.201000684CrossRefPubMedGoogle Scholar
  203. 203.
    Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia Coli. Microbiology 145(Pt 9):2549–2557. www.microbiologyresearch.orgCrossRefGoogle Scholar
  204. 204.
    Fleming A (1932) On the specific antibacterial properties of penicillin and potassium tellurite. Incorporating a method of demonstrating some bacterial antagonisms. J Pathol Bacteriol 35(6):831–842.  https://doi.org/10.1002/path.1700350603CrossRefGoogle Scholar
  205. 205.
    Chapman PA, Siddons CA, Zadik PM, Jewes L (1991) An improved selective medium for the isolation of Escherichia Coli O 157. J Med Microbiol 35(2):107–110.  https://doi.org/10.1099/00222615-35-2-107CrossRefPubMedGoogle Scholar
  206. 206.
    Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123PubMedPubMedCentralGoogle Scholar
  207. 207.
    Webster TJ, Seil I (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767.  https://doi.org/10.2147/IJN.S24805.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Wang L, Hu C, Shao L (2017a) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249.  https://doi.org/10.2147/IJN.S121956.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Figueroa M, Fernandez V, Arenas-Salinas M, Ahumada D, Muñoz-Villagrán C, Cornejo F, Vargas E et al (2018) Synthesis and antibacterial activity of metal(loid) nanostructures by environmental multi-metal(loid) resistant bacteria and metal(loid)-reducing flavoproteins. Front Microbiol 9:959.  https://doi.org/10.3389/fmicb.2018.00959CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Lin Z-H, Lee C-H, Chang H-Y, Chang H-T (2012) Antibacterial activities of tellurium nanomaterials. Chem Asian J 7(5):930–934.  https://doi.org/10.1002/asia.201101006CrossRefPubMedGoogle Scholar
  211. 211.
    Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47(11):3719–3725.  https://doi.org/10.1016/J.MATERRESBULL.2012.06.034CrossRefGoogle Scholar
  212. 212.
    Jassim AMN, Farhan SA, Salman JAS, Khalaf KJ, Al Marjani MF, Mohammed M (2015) Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int J Chem Biomol Sci 1(3):81–84. https://www.semanticscholar.org/paper/Study-the-Antibacterial-Effect-of-Bismuth-Oxide-and-Jassim-Farhan/327caffd1131ea7c8c69c3f0ebf36df4ef493137Google Scholar
  213. 213.
    Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65.  https://doi.org/10.1186/s12951-017-0308-zCrossRefGoogle Scholar
  214. 214.
    Dutta P, Harrison A, Sabbani S, Munson RS, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833.  https://doi.org/10.2147/IJN.S24019.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424.  https://doi.org/10.3322/caac.21492CrossRefGoogle Scholar
  216. 216.
    Boini S, Briançon S, Guillemin F, Galan P, Hercberg S (2004) Impact of cancer occurrence on health-related quality of life: a longitudinal pre-post assessment. Health Qual Life Outcomes 2:4.  https://doi.org/10.1186/1477-7525-2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Shewach DS, Kuchta RD (2009) Introduction to cancer chemotherapeutics. Chem Rev 109(7):2859–2861.  https://doi.org/10.1021/cr900208xCrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199.  https://doi.org/10.7150/ijms.3635CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Benjamin DJ (2014) The efficacy of surgical treatment of cancer—20 years later. Med Hypotheses 82(4):412–420.  https://doi.org/10.1016/j.mehy.2014.01.004CrossRefPubMedGoogle Scholar
  220. 220.
    Nakamura S (2018) [Radiotherapy and new cancer drugs—new side effects?]. Gan to Kagaku Ryoho 45(3):424–27. http://www.ncbi.nlm.nih.gov/pubmed/29650897
  221. 221.
    Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E (2009) Potential chemotherapy side effects: what do oncologists tell parents? Pediatr Blood Cancer 52(4):497–502.  https://doi.org/10.1002/pbc.21835CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancers 6(3):1769–1792.  https://doi.org/10.3390/cancers6031769CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Sredni B (2012) Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol 22(1):60–69.  https://doi.org/10.1016/j.semcancer.2011.12.003CrossRefPubMedGoogle Scholar
  224. 224.
    Silberman A, Kalechman Y, Hirsch S, Erlich Z, Sredni B, Albeck A (2016) The anticancer activity of organotelluranes: potential role in integrin inactivation. Chembiochem 17(10):918–927.  https://doi.org/10.1002/cbic.201500614CrossRefPubMedGoogle Scholar
  225. 225.
    Fry F, Jacob C (2006) Sensor/effector drug design with potential relevance to cancer. Curr Pharm Des 12(34):4479–4499.  https://doi.org/10.2174/138161206779010512CrossRefPubMedGoogle Scholar
  226. 226.
    Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016c) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534.  https://doi.org/10.3390/ijms17091534CrossRefPubMedCentralGoogle Scholar
  227. 227.
    Giles NM, Gutowski NJ, Giles GI, Jacob C (2003b) Redox catalysts as sensitisers towards oxidative stress. FEBS Lett 535(1–3):179–182.  https://doi.org/10.1016/S0014-5793(02)03890-5CrossRefPubMedGoogle Scholar
  228. 228.
    Fry FH, Holme AL, Giles NM, Giles GI, Collins C, Holt K, Pariagh S et al (2005) Multifunctional redox catalysts as selective enhancers of oxidative stress. Org Biomol Chem 3(14):2579.  https://doi.org/10.1039/b502197aCrossRefPubMedGoogle Scholar
  229. 229.
    Carmely A, Meirow D, Peretz A, Albeck M, Bartoov B, Sredni B (2009) Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Hum Reprod 24(6):1322–1329.  https://doi.org/10.1093/humrep/den481CrossRefPubMedGoogle Scholar
  230. 230.
    Cunha RL, Gouvêa IE, Feitosa GPV, Alves MFM, Brömme D, Comasseto JV, Tersariol ILS, Juliano L (2009) Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds. Biol Chem 390(11):1205–1212.  https://doi.org/10.1515/BC.2009.125CrossRefPubMedGoogle Scholar
  231. 231.
    Ahmed K, Zaidi SF (2013) Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis. J Pak Med Assoc 63(4):504–508. http://www.ncbi.nlm.nih.gov/pubmed/23905451PubMedGoogle Scholar
  232. 232.
    Luk KH, Hulse RM, Phillips TL (1980) Hyperthermia in cancer therapy. West J Med 132(3):179–185. http://www.ncbi.nlm.nih.gov/pubmed/7376656PubMedPubMedCentralGoogle Scholar
  233. 233.
    Huang W, Huang Y, You Y, Nie T, Chen T (2017a) High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy. Adv Funct Mater 27(33):1701388.  https://doi.org/10.1002/adfm.201701388CrossRefGoogle Scholar
  234. 234.
    Huang Y, Fan C-Q, Dong H, Wang S-M, Yang X-C, Yang S-M (2017c) Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomedicine 12:1815–1825.  https://doi.org/10.2147/IJN.S127349CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Iglehart JK (2006) The new era of medical imaging—progress and pitfalls. N Engl J Med 354(26):2822–2828.  https://doi.org/10.1056/NEJMhpr061219CrossRefPubMedGoogle Scholar
  236. 236.
    Garvey CJ, Hanlon R (2002) Computed tomography in clinical practice. BMJ 324(7345):1077–1080. http://www.ncbi.nlm.nih.gov/pubmed/11991915CrossRefGoogle Scholar
  237. 237.
    Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW (2015) Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 5(3):246–255.  https://doi.org/10.1016/j.jceh.2015.08.001CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Picano E (2005) Economic and biological costs of cardiac imaging. Cardiovasc Ultrasound 3:13.  https://doi.org/10.1186/1476-7120-3-13CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E (2014) Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 76:79–97.  https://doi.org/10.1016/j.addr.2014.08.002CrossRefPubMedGoogle Scholar
  240. 240.
    Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129–141. http://www.ncbi.nlm.nih.gov/pubmed/17722542PubMedPubMedCentralGoogle Scholar
  241. 241.
    Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986.  https://doi.org/10.1021/acs.chemrev.6b00073CrossRefPubMedGoogle Scholar
  242. 242.
    Leary J, Key J (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 9:711.  https://doi.org/10.2147/IJN.S53717CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13(2):125–138.  https://doi.org/10.1038/nmat3780CrossRefPubMedGoogle Scholar
  244. 244.
    Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310. http://www.ncbi.nlm.nih.gov/pubmed/21084027CrossRefGoogle Scholar
  245. 245.
    Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194.  https://doi.org/10.1517/17425240903229031CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364.  https://doi.org/10.1021/acs.molpharmaceut.6b00839CrossRefPubMedGoogle Scholar
  247. 247.
    Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596. http://www.ncbi.nlm.nih.gov/pubmed/19367807CrossRefGoogle Scholar
  248. 248.
    Liu X, Silks LA, Liu C, Ollivault-Shiflett M, Huang X, Li J, Luo G, Hou Y-M, Liu J, Shen J (2009) Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew Chem Int Ed 48(11):2020–2023.  https://doi.org/10.1002/anie.200805365CrossRefGoogle Scholar
  249. 249.
    Knapp FF, Ambrose KR (1980) Tellurium-123m-labeled 23-(lsopropyl telluro)-24-Nor-5a-Cholan-3f3-Ol: a new potential adrenal imaging agent. J Nucl Med 21:251–257. http://jnm.snmjournals.org/content/21/3/251.full.pdfPubMedGoogle Scholar
  250. 250.
    Okada RD, Knapp FF, Elmaleh DR, Yasuda T, Boucher CA, Strauss HW (1982) Tellurium-123m-labeled-9-telluraheptadecanoic acid: a possible cardiac imaging agent. Circulation 65(2):305–310.  https://doi.org/10.1161/01.CIR.65.2.305CrossRefPubMedGoogle Scholar
  251. 251.
    Valizadeh A, Mikaeili H, Samiei M, Farkhani S, Zarghami N, kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7(1):480.  https://doi.org/10.1186/1556-276X-7-480CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59(3):237–251.  https://doi.org/10.1369/0022155411398487CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106.  https://doi.org/10.1021/JA035000OCrossRefPubMedGoogle Scholar
  254. 254.
    Chen L, Chen C, Li R, Li Y, Liu S (2009) CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker. Chem Commun (19):2670.  https://doi.org/10.1039/b900319c
  255. 255.
    Xu P, Li J, Shi L, Selke M, Chen B, Wang X (2013) Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomedicine 8:3729.  https://doi.org/10.2147/IJN.S51622CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Jiang C, Shen Z, Luo C, Lin H, Huang R, Wang Y, Peng H (2016) One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities. Talanta 155:14–20.  https://doi.org/10.1016/j.talanta.2016.04.021.CrossRefPubMedGoogle Scholar
  257. 257.
    Zhang J, Su J, Liu L, Huang Y, Mason RP (2008) Evaluation of red CdTe and near infrared CdHgTe quantum dots by fluorescent imaging. J Nanosci Nanotechnol 8(3):1155–1159. http://www.ncbi.nlm.nih.gov/pubmed/18468115CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Medina-Cruz
    • 1
  • William Tien-Street
    • 1
    • 2
  • Ada Vernet-Crua
    • 1
  • Bohan Zhang
    • 1
  • Xinjing Huang
    • 1
  • Athma Murali
    • 1
  • Junjiang Chen
    • 1
  • Yang Liu
    • 1
  • Jose Miguel Garcia-Martin
    • 3
  • Jorge L. Cholula-Díaz
    • 4
  • Thomas Webster
    • 1
    Email author
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of BioengineeringNortheastern UniversityBostonUSA
  3. 3.Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC)Tres CantosSpain
  4. 4.School of Engineering and SciencesTecnologico de MonterreyMonterreyMexico

Personalised recommendations