Antibody Mediated Osseous Regeneration: A New Strategy for Bioengineering

  • Fernanda Coelho
  • Ticiana Sidorenko de Oliveira Capote
  • Marcell Costa de Medeiros
  • Suzane Cristina Pigossi


This chapter provides a brief review of bone biology and metabolism, focusing on the regenerative potential of bone tissues. In this context, we discussed the main clinical approaches to enhance bone regeneration, concentrating on an innovative approach referred to as antibody-mediated osseous regeneration (AMOR). Bone morphogenetic proteins (BMPs) are some of the most relevant osteoinductive factors in the demineralized bone matrix. The main role of BMPs is the recruitment and differentiation of mesenchymal cells into an osteogenic lineage, resulting in new bone formation. As an alternative for the BMP-2 exogenous administration of an osteoinductive growth factor, the use of immobilized anti-BMP-2 antibodies in matrices has been proposed to capture the endogenous protein. The captured endogenous BMP-2 would be able to induce osteogenic differentiation of osteoprogenitor stem cells and improve the bone formation. In general, the association of anti-BMP-2 mAb with a scaffold has demonstrated success in new bone formation in different in vivo models with no evidence of adverse reactions.


Bone regeneration Bone morphogenetic proteins Antibodies Stem cells Osteoinductive Osteoconductive Osteogenic Scaffold 


  1. 1.
    Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRefGoogle Scholar
  2. 2.
    Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19CrossRefGoogle Scholar
  3. 3.
    Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRefGoogle Scholar
  4. 4.
    Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029CrossRefGoogle Scholar
  5. 5.
    Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593CrossRefGoogle Scholar
  6. 6.
    Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H (2012) The current and future therapies of bone regeneration to repair bone defects. Int J Dent 2012:148261CrossRefGoogle Scholar
  7. 7.
    Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30:573–593CrossRefGoogle Scholar
  8. 8.
    Valerio P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948CrossRefGoogle Scholar
  9. 9.
    Sommerfeldt DW, Rubin CT (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10(Suppl 2):S86–S95PubMedPubMedCentralGoogle Scholar
  10. 10.
    Williams PL, Warwick R, Dyson M, Bannister LH (1989) Gray’s anatomy, 37th edn. Churchill Livingstone, EdinburghGoogle Scholar
  11. 11.
    Wagh MR, Ravalia D (2015) Bone regeneration and repair: current and future aspects. Int J Sci Res 4:351–355Google Scholar
  12. 12.
    Deschaseaux F, Sensebe L, Heymann D (2009) Mechanisms of bone repair and regeneration. Trends Mol Med 15:417–429CrossRefGoogle Scholar
  13. 13.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66CrossRefGoogle Scholar
  14. 14.
    Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359CrossRefGoogle Scholar
  15. 15.
    Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466CrossRefGoogle Scholar
  16. 16.
    Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 64:1292–1309CrossRefGoogle Scholar
  17. 17.
    Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. Chir Organ Mov 92:161–168CrossRefGoogle Scholar
  18. 18.
    Martin V, Bettencourt A (2018) Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties. Korean J Couns Psychother 82:363–371Google Scholar
  19. 19.
    Rose FR, Oreffo RO (2002) Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun 292:1–7CrossRefGoogle Scholar
  20. 20.
    Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A (2010) Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 394:755–759CrossRefGoogle Scholar
  21. 21.
    Tiedeman JJ, Garvin KL, Kile TA, Connolly JF (1995) The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18:1153–1158PubMedGoogle Scholar
  22. 22.
    Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8CrossRefGoogle Scholar
  23. 23.
    Kumar P, Vinitha B, Fathima G (2013) Bone grafts in dentistry. J Pharm Bioallied Sci 5:S125–S127CrossRefGoogle Scholar
  24. 24.
    LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res:81–98Google Scholar
  25. 25.
    Schliephake H (2010) Application of bone growth factors—the potential of different carrier systems. Oral Maxillofac Surg 14:17–22CrossRefGoogle Scholar
  26. 26.
    Freire MO, You HK, Kook JK, Choi JH, Zadeh HH (2011) Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti-bone morphogenetic protein-2 antibodies. Tissue Eng Part A 17:2911–2918CrossRefGoogle Scholar
  27. 27.
    Suzuki M, Kato C, Kato A (2015) Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J Toxicol Pathol 28:133–139CrossRefGoogle Scholar
  28. 28.
    Viola M, Sequeira J, Seica R, Veiga F, Serra J, Santos AC, Ribeiro AJ (2018) Subcutaneous delivery of monoclonal antibodies: how do we get there? J Control Release 286:301–314CrossRefGoogle Scholar
  29. 29.
    Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2:1–13CrossRefGoogle Scholar
  30. 30.
    Kim NH, Lee SH, Ryu JJ, Choi KH, Huh JB (2015) Effects of rhBMP-2 on sandblasted and acid etched titanium implant surfaces on bone regeneration and osseointegration: spilt-mouth designed pilot study. Biomed Res Int 2015:459393PubMedPubMedCentralGoogle Scholar
  31. 31.
    Rath B, Nam J, Deschner J, Schaumburger J, Tingart M, Grassel S, Grifka J, Agarwal S (2011) Biomechanical forces exert anabolic effects on osteoblasts by activation of SMAD 1/5/8 through type 1 BMP receptor. Biorheology 48:37–48CrossRefGoogle Scholar
  32. 32.
    Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jayasinghe SN, Edirisinghe MJ (2004) In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med 15:441–445CrossRefGoogle Scholar
  33. 33.
    Alonso N, Tanikawa DY, Freitas Rda S, Canan L Jr, Ozawa TO, Rocha DL (2010) Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients. Tissue Eng Part C Methods 16:1183–1189CrossRefGoogle Scholar
  34. 34.
    Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11:471–491CrossRefGoogle Scholar
  35. 35.
    Herford AS, Boyne PJ, Rawson R, Williams RP (2007) Bone morphogenetic protein-induced repair of the premaxillary cleft. J Oral Maxillofac Surg 65:2136–2141CrossRefGoogle Scholar
  36. 36.
    Epstein NE (2013) Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg Neurol Int 4:S343–S352CrossRefGoogle Scholar
  37. 37.
    Ansari S, Freire MO, Pang EK, Abdelhamid AI, Almohaimeed M, Zadeh HH (2014) Immobilization of murine anti-BMP-2 monoclonal antibody on various biomaterials for bone tissue engineering. Biomed Res Int 2014:940860CrossRefGoogle Scholar
  38. 38.
    Wu Q, Yang B, Cao C, Hu K, Wang P, Man Y (2018) Therapeutic antibody directed osteogenic differentiation of induced pluripotent stem cell derived MSCs. Acta Biomater 74:222–235CrossRefGoogle Scholar
  39. 39.
    Guo L, Min S, Su Y, Tang J, Du J, Goh BT, Saigo L, Wang S, Ansari S, Moshaverinia A, Zadeh HH, Liu Y (2017) Collagen sponge functionalized with chimeric anti-BMP-2 monoclonal antibody mediates repair of nonunion tibia defects in a nonhuman primate model: an exploratory study. J Biomater Appl 32:425–432CrossRefGoogle Scholar
  40. 40.
    Xie Y, Su Y, Min S, Tang J, Goh BT, Saigo L, Ansari S, Moshaverinia A, Zhang C, Wang J, Liu Y, Khojasteh A, Zadeh HH, Wang S (2017) Collagen sponge functionalized with chimeric anti-BMP-2 monoclonal antibody mediates repair of critical-size mandibular continuity defects in a nonhuman primate model. Biomed Res Int 2017:8094152PubMedPubMedCentralGoogle Scholar
  41. 41.
    Khojasteh A, Hosseinpour S, Dehghan MM, Mashhadiabbas F, Rezai Rad M, Ansari S, Farzad Mohajeri S, Zadeh HH (2018) Antibody-mediated osseous regeneration for bone tissue engineering in canine segmental defects. Biomed Res Int 2018:9508721CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fernanda Coelho
    • 1
  • Ticiana Sidorenko de Oliveira Capote
    • 1
  • Marcell Costa de Medeiros
    • 1
  • Suzane Cristina Pigossi
    • 2
  1. 1.Department of MorphologySchool of Dentistry, São Paulo State University (UNESP)AraraquaraBrazil
  2. 2.Department of Clinics and SurgerySchool of Dentistry, Alfenas Federal University (Unifal-MG)AlfenasBrazil

Personalised recommendations