Advertisement

Fracture Healing and Progress Towards Successful Repair

  • William A. LackingtonEmail author
  • Keith Thompson
Chapter

Abstract

Despite the intrinsic healing capacity of bone and advancements in orthopedic technologies, well-established interventions, including autologous bone grafting, have had a relatively limited impact on easing the burden of a proportion of the 5–20% of long bone fracture patients who suffer from delayed healing or nonunion. In this chapter, we describe how the biology of bone development and bone homeostasis are recapitulated in bone healing, and how immunological and mechanical factors regulate healing. We present the current barriers faced clinically, outlining some of the main risk factors associated with the development of delayed healing and nonunion, with a focus on bone infection, and how it hijacks the bone healing process, ultimately leading to bone destruction. We conclude by depicting the outlook on fracture healing, outlining the progress to-date and the biggest challenges we face, while highlighting how our increasing understanding of the immunomodulation of bone healing can potentially be harnessed to develop innovative strategies for patient benefit.

Keywords

Fracture healing Mechanical factor Immunological factor Delayed healing Nonunion Risk factor 

References

  1. 1.
    Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shegarfi H, Reikeras O (2009) Review article: bone transplantation and immune response. J Orthop Surg (Hong Kong) 17:206–211CrossRefGoogle Scholar
  3. 3.
    Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2:224–247CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Haas NP (2000) Callus modulation—fiction or reality? Chirurg 71:987–988CrossRefGoogle Scholar
  5. 5.
    Winkler T, Sass FA, Duda GN, Schmidt-Bleek K (2018) A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res 7:232–243CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grabowski G, Cornett CA (2013) Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg 21:51–60CrossRefGoogle Scholar
  7. 7.
    Flierl MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, Peacher G, Hak DJ, Stahel PF (2013) Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res 8:33CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Betz RR (2002) Limitations of autograft and allograft: new synthetic solutions. Orthopedics 25:s561–s570PubMedGoogle Scholar
  9. 9.
    Sridharan R, Reilly RB, Buckley CT (2015) Decellularized grafts with axially aligned channels for peripheral nerve regeneration. J Mech Behav Biomed Mater 41:124–135CrossRefGoogle Scholar
  10. 10.
    Hirasawa T, Kuratani S (2015) Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Lett 1:2. eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rodan GA (1998) Bone homeostasis. Proc Natl Acad Sci U S A 95:13361–13362CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Thompson EM, Matsiko A, Farrell E, Kelly DJ, O’Brien FJ (2015) Recapitulating endochondral ossification: a promising route to in vivo bone regeneration. J Tissue Eng Regen Med 9:889–902CrossRefGoogle Scholar
  13. 13.
    Karaplis AC (2008) Chapter 3—Embryonic development of bone and regulation of intramembranous and endochondral bone formation. In: Bilezikian J, Raisz LG, Martin TJ (eds) Principles of bone biology. Academic Press, San Diego, pp 53–84CrossRefGoogle Scholar
  14. 14.
    Nah HD, Rodgers BJ, Kulyk WM, Kream BE, Kosher RA, Upholt WB (1988) In situ hybridization analysis of the expression of the type II collagen gene in the developing chicken limb bud. Coll Relat Res 8:277–294CrossRefGoogle Scholar
  15. 15.
    Hall BK, Miyake T (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl) 186:107–124CrossRefGoogle Scholar
  16. 16.
    Kosher RA, Kulyk WM, Gay SW (1986) Collagen gene expression during limb cartilage differentiation. J Cell Biol 102:1151–1156CrossRefGoogle Scholar
  17. 17.
    Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35PubMedGoogle Scholar
  18. 18.
    Schmid TM, Linsenmayer TF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100:598–605CrossRefGoogle Scholar
  19. 19.
    Liu Z, Xu J, Colvin JS, Ornitz DM (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16:859–869CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446–1465CrossRefGoogle Scholar
  21. 21.
    Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429PubMedGoogle Scholar
  22. 22.
    Perren SM (1991) The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Scientific background, design and application. Injury 22 Suppl 1:1–41PubMedGoogle Scholar
  23. 23.
    Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ (2007) Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J Bone Miner Res 22:1548–1556CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Matsiko A, Thompson EM, Lloyd-Griffith C, Cunniffe GM, Vinardell T, Gleeson JP, Kelly DJ, O’Brien FJ (2018) An endochondral ossification approach to early stage bone repair: use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair. J Tissue Eng Regen Med 12:e2147–e2150CrossRefGoogle Scholar
  25. 25.
    Sheehy EJ, Mesallati T, Kelly L, Vinardell T, Buckley CT, Kelly DJ (2015) Tissue engineering whole bones through endochondral ossification: regenerating the distal phalanx. Biores Open Access 4:229–241CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016) Inflammation, fracture and bone repair. Bone 86:119–130CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286CrossRefGoogle Scholar
  28. 28.
    Cho SW (2015) Role of osteal macrophages in bone metabolism. J Pathol Transl Med 49:102–104CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lassus J, Salo J, Jiranek WA, Santavirta S, Nevalainen J, Matucci-Cerinic M, Horak P, Konttinen Y (1998) Macrophage activation results in bone resorption. Clin Orthop Relat Res 352:7–15CrossRefGoogle Scholar
  30. 30.
    Pacifici R (2013) Osteoimmunology and its implications for transplantation. Am J Transplant 13:2245–2254CrossRefGoogle Scholar
  31. 31.
    J C-L, H C, J.E F (2009) Osteoimmunology—the hidden immune regulation of bone. Autoimmun Rev 8:250–255CrossRefGoogle Scholar
  32. 32.
    Mori G, D’Amelio P, Faccio R, Brunetti G (2013) The interplay between the bone and the immune system. Clin Dev Immunol 2013:720504CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res 21:673–681CrossRefGoogle Scholar
  34. 34.
    Rodan GA (1997) Bone mass homeostasis and bisphosphonate action. Bone 20:1–4CrossRefGoogle Scholar
  35. 35.
    Frost HM (1994) Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188PubMedGoogle Scholar
  36. 36.
    Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:319–338CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59:204–208CrossRefGoogle Scholar
  38. 38.
    Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing—an update. Injury 38(Suppl 1):S3–S10CrossRefGoogle Scholar
  39. 39.
    Kaderly RE (1991) Primary bone healing. Semin Vet Med Surg 6:21–25Google Scholar
  40. 40.
    Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143CrossRefGoogle Scholar
  41. 41.
    Shapiro F (1988) Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am 70:1067–1081CrossRefGoogle Scholar
  42. 42.
    Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 84:1093–1110CrossRefGoogle Scholar
  43. 43.
    Morshed S (2014) Current options for determining fracture union. Adv Med 2014:708574CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520CrossRefGoogle Scholar
  45. 45.
    Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014CrossRefGoogle Scholar
  46. 46.
    Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K (2017) The haematoma and its role in bone healing. J Exp Orthop 4:5. Epub 2017 Feb 7CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T (2011) Systemic inflammation and fracture healing. J Leukoc Biol 89:669–673CrossRefGoogle Scholar
  48. 48.
    Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS (2010) Multiple roles for CCR2 during fracture healing. Dis Model Mech 3:451–458CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hoff P, Maschmeyer P, Gaber T, Schutze T, Raue T, Schmidt-Bleek K, Dziurla R, Schellmann S, Lohanatha FL, Rohner E, Ode A, Burmester GR, Duda GN, Perka C, Buttgereit F (2013) Human immune cells’ behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model. Cell Mol Immunol 10:151–158CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lu Z, Wang G, Dunstan CR, Zreiqat H (2012) Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev 21:2420–2429CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Karnes JM, Daffner SD, Watkins CM (2015) Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 78:87–93CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC (1995) The expression of cytokine activity by fracture callus. J Bone Miner Res 10:1272–1281CrossRefGoogle Scholar
  53. 53.
    Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M, Shim J, Hameed M, Healey JH, Bostrom MP, Landau DA, Greenblatt MB (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562:133–139CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746CrossRefGoogle Scholar
  55. 55.
    Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564CrossRefGoogle Scholar
  56. 56.
    Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 6:87–100CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Melnyk M, Henke T, Claes L, Augat P (2008) Revascularisation during fracture healing with soft tissue injury. Arch Orthop Trauma Surg 128:1159–1165CrossRefGoogle Scholar
  58. 58.
    Grundnes O, Reikeras O (1992) Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Acta Orthop Scand 63:487–491CrossRefGoogle Scholar
  59. 59.
    Bielby R, Jones E, McGonagle D (2007) The role of mesenchymal stem cells in maintenance and repair of bone. Injury 38(Suppl 1):S26–S32CrossRefGoogle Scholar
  60. 60.
    Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klaumunzer A, Schreivogel S, Woloszyk A, Schmidt-Bleek K, Geissler S, Heschel I, Duda GN (2018) A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun 9:4430CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989CrossRefGoogle Scholar
  62. 62.
    Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, Lowik CW (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143:1545–1553CrossRefGoogle Scholar
  63. 63.
    Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466CrossRefGoogle Scholar
  64. 64.
    Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25CrossRefGoogle Scholar
  65. 65.
    Clines GA (2010) Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis. Curr Opin Organ Transplant 15:73–78CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Colnot C, Huang S, Helms J (2006) Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice. Biochem Biophys Res Commun 350:557–561CrossRefGoogle Scholar
  67. 67.
    Rumi MN, Deol GS, Singapuri KP, Pellegrini VD Jr (2005) The origin of osteoprogenitor cells responsible for heterotopic ossification following hip surgery: an animal model in the rabbit. J Orthop Res 23:34–40CrossRefGoogle Scholar
  68. 68.
    Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96:930–938CrossRefGoogle Scholar
  69. 69.
    Feng X, Teitelbaum SL (2013) Osteoclasts: new insights. Bone Res 1:11–26CrossRefGoogle Scholar
  70. 70.
    Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRefGoogle Scholar
  72. 72.
    Kodama H, Nose M, Niida S, Yamasaki A (1991) Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J Exp Med 173:1291–1294CrossRefGoogle Scholar
  73. 73.
    Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of compromised fracture healing. J Am Acad Orthop Surg 20:273–282CrossRefGoogle Scholar
  74. 74.
    Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P 3rd, Sprague S, Schemitsch EH (2002) A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma 16:562–566CrossRefGoogle Scholar
  75. 75.
    Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, Proksch N, Pastor F, Netter C, Streichert T, Puschel K, Amling M (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312CrossRefGoogle Scholar
  76. 76.
    Feitosa Dda S, Bezerra Bde B, Ambrosano GM, Nociti FH, Casati MZ, Sallum EA, de Toledo S (2008) Thyroid hormones may influence cortical bone healing around titanium implants: a histometric study in rats. J Periodontol 79:881–887CrossRefGoogle Scholar
  77. 77.
    Duarte PM, Cesar Neto JB, Goncalves PF, Sallum EA, Nociti J (2003) Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent 12:340–346CrossRefGoogle Scholar
  78. 78.
    Zura R, Kaste SC, Heffernan MJ, Accousti WK, Gargiulo D, Wang Z, Steen RG (2018) Risk factors for nonunion of bone fracture in pediatric patients: an inception cohort study of 237,033 fractures. Medicine (Baltimore) 97:e11691CrossRefGoogle Scholar
  79. 79.
    Yan W, Li X (2013) Impact of diabetes and its treatments on skeletal diseases. Front Med 7:81–90CrossRefGoogle Scholar
  80. 80.
    Gong Z, Muzumdar RH (2012) Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol 2012:320482CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Moseley KF (2012) Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes 19:128–135CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Graves DT, Kayal RA (2008) Diabetic complications and dysregulated innate immunity. Front Biosci 13:1227–1239CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Pacios S, Kang J, Galicia J, Gluck K, Patel H, Ovaydi-Mandel A, Petrov S, Alawi F, Graves DT (2012) Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J 26:1423–1430CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Alblowi J, Tian C, Siqueira MF, Kayal RA, McKenzie E, Behl Y, Gerstenfeld L, Einhorn TA, Graves DT (2013) Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone 53:294–300CrossRefGoogle Scholar
  86. 86.
    Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS (2012) Patient-related risk factors for fracture-healing complications in the United Kingdom general practice research database. Acta Orthop 83:653–660CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Blackwell KA, Raisz LG, Pilbeam CC (2010) Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 21:294–301CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Nasrallah R, Laneuville O, Ferguson S, Hebert RL (2001) Effect of COX-2 inhibitor NS-398 on expression of PGE2 receptor subtypes in M-1 mouse CCD cells. Am J Physiol Renal Physiol 281:F123–F132CrossRefGoogle Scholar
  89. 89.
    Welting TJ, Caron MM, Emans PJ, Janssen MP, Sanen K, Coolsen MM, Voss L, Surtel DA, Cremers A, Voncken JW, van Rhijn LW (2011) Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification. Eur Cell Mater 22:420–436; discussion 436–7CrossRefGoogle Scholar
  90. 90.
    Burd TA, Hughes MS, Anglen JO (2003) Heterotopic ossification prophylaxis with indomethacin increases the risk of long-bone nonunion. J Bone Joint Surg Br 85:700–705CrossRefGoogle Scholar
  91. 91.
    Bhattacharyya T, Levin R, Vrahas MS, Solomon DH (2005) Nonsteroidal antiinflammatory drugs and nonunion of humeral shaft fractures. Arthritis Rheum 53:364–367CrossRefGoogle Scholar
  92. 92.
    Giannoudis PV, MacDonald DA, Matthews SJ, Smith RM, Furlong AJ, De Boer P (2000) Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br 82:655–658CrossRefGoogle Scholar
  93. 93.
    Dodwell ER, Latorre JG, Parisini E, Zwettler E, Chandra D, Mulpuri K, Snyder B (2010) NSAID exposure and risk of nonunion: a meta-analysis of case-control and cohort studies. Calcif Tissue Int 87:193–202CrossRefGoogle Scholar
  94. 94.
    Pearson RG, Clement RG, Edwards KL, Scammell BE (2016) Do smokers have greater risk of delayed and non-union after fracture, osteotomy and arthrodesis? A systematic review with meta-analysis. BMJ Open 6:e010303CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Bornmyr S, Svensson H (1991) Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Clin Physiol 11:135–141CrossRefGoogle Scholar
  96. 96.
    Mosely LH, Finseth F (1977) Cigarette smoking: impairment of digital blood flow and wound healing in the hand. Hand 9:97–101CrossRefGoogle Scholar
  97. 97.
    Sorensen LT, Jorgensen S, Petersen LJ, Hemmingsen U, Bulow J, Loft S, Gottrup F (2009) Acute effects of nicotine and smoking on blood flow, tissue oxygen, and aerobe metabolism of the skin and subcutis. J Surg Res 152:224–230CrossRefGoogle Scholar
  98. 98.
    Fang MA, Frost PJ, Iida-Klein A, Hahn TJ (1991) Effects of nicotine on cellular function in UMR 106-01 osteoblast-like cells. Bone 12:283–286CrossRefGoogle Scholar
  99. 99.
    Leow YH, Maibach HI (1998) Cigarette smoking, cutaneous vasculature, and tissue oxygen. Clin Dermatol 16:579–584CrossRefGoogle Scholar
  100. 100.
    Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR (2000) The effect of cigarette smoking and smoking cessation on spinal fusion. Spine (Phila Pa 1976) 25:2608–2615CrossRefGoogle Scholar
  101. 101.
    Andersen T, Christensen FB, Laursen M, Hoy K, Hansen ES, Bunger C (2001) Smoking as a predictor of negative outcome in lumbar spinal fusion. Spine (Phila Pa 1976) 26:2623–2628CrossRefGoogle Scholar
  102. 102.
    Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE (2004) Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Joint Surg Am 86-A:1359–1365CrossRefGoogle Scholar
  103. 103.
    Rosenberg GA, Sferra JJ (2000) Treatment strategies for acute fractures and nonunions of the proximal fifth metatarsal. J Am Acad Orthop Surg 8:332–338CrossRefGoogle Scholar
  104. 104.
    Kozin SH (2001) Incidence, mechanism, and natural history of scaphoid fractures. Hand Clin 17:515–524PubMedGoogle Scholar
  105. 105.
    DiGiovanni CW (2004) Fractures of the navicular. Foot Ankle Clin 9:25–63CrossRefGoogle Scholar
  106. 106.
    Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res (355 Suppl):S132–47, 355SGoogle Scholar
  107. 107.
    Mouzopoulos G, Kanakaris NK, Kontakis G, Obakponovwe O, Townsend R, Giannoudis PV (2011) Management of bone infections in adults: the surgeon’s and microbiologist’s perspectives. Injury 42(Suppl 5):S18–S23CrossRefGoogle Scholar
  108. 108.
    Lowy FD, Hammer SM (1983) Staphylococcus epidermidis infections. Ann Intern Med 99:834–839CrossRefGoogle Scholar
  109. 109.
    Court-Brown CM, Keating JF, McQueen MM (1992) Infection after intramedullary nailing of the tibia. Incidence and protocol for management. J Bone Joint Surg Br 74:770–774CrossRefGoogle Scholar
  110. 110.
    Roussignol X, Sigonney G, Potage D, Etienne M, Duparc F, Dujardin F (2015) Secondary nailing after external fixation for tibial shaft fracture: risk factors for union and infection. A 55 case series. Orthop Traumatol Surg Res 101:89–92CrossRefGoogle Scholar
  111. 111.
    Chen AT, Vallier HA (2016) Noncontiguous and open fractures of the lower extremity: epidemiology, complications, and unplanned procedures. Injury 47:742–747CrossRefGoogle Scholar
  112. 112.
    Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27:61–5.e1CrossRefGoogle Scholar
  113. 113.
    Bozic KJ, Kamath AF, Ong K, Lau E, Kurtz S, Chan V, Vail TP, Rubash H, Berry DJ (2015) Comparative epidemiology of revision arthroplasty: failed THA poses greater clinical and economic burdens than failed TKA. Clin Orthop Relat Res 473:2131–2138CrossRefGoogle Scholar
  114. 114.
    Martinez-Pastor JC, Macule-Beneyto F, Suso-Vergara S (2013) Acute infection in total knee arthroplasty: diagnosis and treatment. Open Orthop J 7:197–204CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23:59–72CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME (2008) Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22CrossRefGoogle Scholar
  118. 118.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138CrossRefGoogle Scholar
  119. 119.
    Claro T, Widaa A, O’Seaghdha M, Miajlovic H, Foster TJ, O’Brien FJ, Kerrigan SW (2011) Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One 6:e18748CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW (2012) Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One 7:e40586CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Mendoza Bertelli A, Delpino MV, Lattar S, Giai C, Llana MN, Sanjuan N, Cassat JE, Sordelli D, Gomez MI (2016) Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling. Biochim Biophys Acta 1862:1975–1983CrossRefGoogle Scholar
  122. 122.
    Shinji H, Yosizawa Y, Tajima A, Iwase T, Sugimoto S, Seki K, Mizunoe Y (2011) Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infect Immun 79:2215–2223CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ahmed S, Meghji S, Williams RJ, Henderson B, Brock JH, Nair SP (2001) Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 69:2872–2877CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Bost KL, Bento JL, Ellington JK, Marriott I, Hudson MC (2000) Induction of colony-stimulating factor expression following Staphylococcus or Salmonella interaction with mouse or human osteoblasts. Infect Immun 68:5075–5083CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Bost KL, Ramp WK, Nicholson NC, Bento JL, Marriott I, Hudson MC (1999) Staphylococcus aureus infection of mouse or human osteoblasts induces high levels of interleukin-6 and interleukin-12 production. J Infect Dis 180:1912–1920CrossRefGoogle Scholar
  126. 126.
    Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35:280–288CrossRefGoogle Scholar
  127. 127.
    Trouillet-Assant S, Lelievre L, Martins-Simoes P, Gonzaga L, Tasse J, Valour F, Rasigade JP, Vandenesch F, Muniz Guedes RL, Ribeiro de Vasconcelos AT, Caillon J, Lustig S, Ferry T, Jacqueline C, Loss de Morais G, Laurent F (2016) Adaptive processes of Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients. Cell Microbiol 18:1405–1414CrossRefGoogle Scholar
  128. 128.
    Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, Marvel J, Ferry T, Vandenesch F, Jurdic P, Laurent F (2015) Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis 211:571–581CrossRefGoogle Scholar
  129. 129.
    Kavanagh N, Ryan EJ, Widaa A, Sexton G, Fennell J, O’Rourke S, Cahill KC, Kearney CJ, O’Brien FJ, Kerrigan SW (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31(2).  https://doi.org/10.1128/CMR.00084-17. Print 2018 Apr
  130. 130.
    Flammier S, Rasigade JP, Badiou C, Henry T, Vandenesch F, Laurent F, Trouillet-Assant S (2016) Human monocyte-derived osteoclasts are targeted by staphylococcal pore-forming toxins and superantigens. PLoS One 11:e0150693CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Jin T, Zhu YL, Li J, Shi J, He XQ, Ding J, Xu YQ (2013) Staphylococcal protein A, Panton-Valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cell Physiol Biochem 32:322–333CrossRefGoogle Scholar
  132. 132.
    Badiou C, Dumitrescu O, George N, Forbes AR, Drougka E, Chan KS, Ramdani-Bouguessa N, Meugnier H, Bes M, Vandenesch F, Etienne J, Hsu LY, Tazir M, Spiliopoulou I, Nimmo GR, Hulten KG, Lina G (2010) Rapid detection of Staphylococcus aureus Panton-Valentine leukocidin in clinical specimens by enzyme-linked immunosorbent assay and immunochromatographic tests. J Clin Microbiol 48:1384–1390CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AO Research Institute DavosDavosSwitzerland

Personalised recommendations