Flexible Intravascular EIS Sensors for Detecting Metabolically Active Plaque

  • Yuan Luo
  • Rene Packard
  • Parinaz Abiri
  • Y. C. Tai
  • Tzung K. HsiaiEmail author


This chapter presents a comprehensive discussion on the recent development of utilizing electrochemical impedance spectroscopy (EIS) in atherosclerosis diagnosis. We first outline the general characteristics of atherosclerosis and the need for novel intravascular detection technology. The underlying principal of EIS is then reviewed from physical modeling and equivalent circuit perspectives. The focus of this chapter is the implementation of various EIS devices. We compare the typical 4-point electrode with the more compact 2-point configuration. The concentric bipolar electrode design has been discussed from the early in vitro sample testing to the subsequent device implementation based on stretchable materials. We then move to the most recent 2-point symmetric electrode design, based on which a fascinating 6-point 3-D EIS scheme has been developed. We discuss the live animal study being conducted to demonstrate the performance of such EIS design. Finally, this chapter concludes with our vision on future direction of improving the EIS technology, as well as advancing toward clinical adaptation.


Electrochemical impedance spectroscopy Atherosclerosis Intravascular detection Flexible electronics; Lipid-rich plaque 


  1. 1.
    Bentzon, J. F., Otsuka, F., Virmani, R., & Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research, 114, 1852–1866.CrossRefGoogle Scholar
  2. 2.
    Yahagi, K., Kolodgie, F. D., Otsuka, F., Finn, A. V., Davis, H. R., Joner, M., & Virmani, R. (2016). Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nature Reviews Cardiology, 13, 79.CrossRefGoogle Scholar
  3. 3.
    Vengrenyuk, Y., Carlier, S., Xanthos, S., Cardoso, L., Ganatos, P., Virmani, R., Einav, S., Gilchrist, L., & Weinbaum, S. (2006). A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proceedings of the National Academy of Sciences, 103, 14678–14683.CrossRefGoogle Scholar
  4. 4.
    Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317.CrossRefGoogle Scholar
  5. 5.
    Little, W. C., Constantinescu, M., Applegate, R. J., Kutcher, M. A., Burrows, M. T., Kahl, F. R., & Santamore, W. P. (1988). Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation, 78, 1157–1166.CrossRefGoogle Scholar
  6. 6.
    Ambrose, J. A., Tannenbaum, M. A., Alexopoulos, D., Hjemdahl-Monsen, C. E., Leavy, J., Weiss, M., Borrico, S., Gorlin, R., & Fuster, V. (1988). Angiographic progression of coronary artery disease and the development of myocardial infarction. Journal of the American College of Cardiology, 12, 56–62.CrossRefGoogle Scholar
  7. 7.
    Fuster, V., Badimon, L., Badimon, J., & Chesebro, J. (1992). The pathogenesis of coronary artery disease and the acute coronary syndromes (1). The New England Journal of Medicine, 326(4), 242–250. doi: 10.1056, NEJM199201233260406.[Abstract][Cross Ref].CrossRefGoogle Scholar
  8. 8.
    Libby, P. (2013). Mechanisms of acute coronary syndromes and their implications for therapy. New England Journal of Medicine, 368, 2004–2013.CrossRefGoogle Scholar
  9. 9.
    Anderson, J. L., Adams, C. D., Antman, E. M., Bridges, C. R., Califf, R. M., Casey, D. E., Chavey, W. E., Fesmire, F. M., Hochman, J. S., & Levin, T. N. (2007). ACC/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction) Developed in Collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Journal of the American College of Cardiology, 50, 652–726.CrossRefGoogle Scholar
  10. 10.
    Heistad, D. D. (2003). Unstable coronary-artery plaques. New England Journal of Medicine, 349, 2285–2287.CrossRefGoogle Scholar
  11. 11.
    Galis, Z. S. (2004). Vulnerable plaque: The devil is in the details. Circulation, 110(3), 244–246.CrossRefGoogle Scholar
  12. 12.
    Brown, M. S., & Goldstein, J. L. (1983). Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annual Review of Biochemistry, 52, 223–261.CrossRefGoogle Scholar
  13. 13.
    Park, Y. M., Febbraio, M., & Silverstein, R. L. (2009). CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. The Journal of Clinical Investigation, 119, 136–145.Google Scholar
  14. 14.
    Ehara, S., Ueda, M., Naruko, T., Haze, K., Itoh, A., Otsuka, M., Komatsu, R., Matsuo, T., Itabe, H., & Takano, T. (2001). Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation, 103, 1955–1960.CrossRefGoogle Scholar
  15. 15.
    Chinetti-Gbaguidi, G., Baron, M., Bouhlel, M. A., Vanhoutte, J., Copin, C., Sebti, Y., Derudas, B., Mayi, T., Bories, G., & Tailleux, A. (2011). Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circulation Research. CIRCRESAHA. 110.233775.Google Scholar
  16. 16.
    Tang, D., Yang, C., Kobayashi, S., Zheng, J., & Vito, R. P. (2003). Effect of stenosis asymmetry on blood flow and artery compression: A three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering, 31, 1182–1193.CrossRefGoogle Scholar
  17. 17.
    Schwartz, S. M., Galis, Z. S., Rosenfeld, M. E., & Falk, E. (2007). Plaque rupture in humans and mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 705–713.CrossRefGoogle Scholar
  18. 18.
    Berliner, J. A., & Heinecke, J. W. (1996). The role of oxidized lipoproteins in atherogenesis. Free Radical Biology and Medicine, 20, 707–727.CrossRefGoogle Scholar
  19. 19.
    Asatryan, L., Hamilton, R. T., Isas, J. M., Hwang, J., Kayed, R., & Sevanian, A. (2005). LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. Journal of Lipid Research, 46, 115–122.CrossRefGoogle Scholar
  20. 20.
    Navab, M., Berliner, J. A., Watson, A. D., Hama, S. Y., Territo, M. C., Lusis, A. J., Shih, D. M., Van Lenten, B. J., Frank, J. S., & Demer, L. L. (1996). The yin and yang of oxidation in the development of the fatty streak: A review based on the 1994 George Lyman Duff Memorial Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 831–842.CrossRefGoogle Scholar
  21. 21.
    Ross, R. (1999). Pathogenesis of atherosclerosis-atherosclerosis is an inflammatory disease. American Heart Journal, 138, S419.CrossRefGoogle Scholar
  22. 22.
    Bourantas, C. V., Garcia-Garcia, H. M., Naka, K. K., Sakellarios, A., Athanasiou, L., Fotiadis, D. I., Michalis, L. K., & Serruys, P. W. (2013). Hybrid intravascular imaging: Current applications and prospective potential in the study of coronary atherosclerosis. Journal of the American College of Cardiology, 61, 1369–1378.CrossRefGoogle Scholar
  23. 23.
    Worthley, S. G., Helft, G., Fuster, V., Fayad, Z. A., Shinnar, M., Minkoff, L. A., Schechter, C., Fallon, J. T., & Badimon, J. J. (2003). A novel nonobstructive intravascular MRI coil: In vivo imaging of experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 346–350.CrossRefGoogle Scholar
  24. 24.
    Jaffer, F. A., Vinegoni, C., John, M. C., Aikawa, E., Gold, H. K., Finn, A. V., Ntziachristos, V., Libby, P., & Weissleder, R. (2008). Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation, 118, 1802–1809.CrossRefGoogle Scholar
  25. 25.
    Marcu, L., Fishbein, M. C., Maarek, J.-M. I., & Grundfest, W. S. (2001). Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1244–1250.CrossRefGoogle Scholar
  26. 26.
    Castellanos, A., Ramos, A., Gonzalez, A., Green, N. G., & Morgan, H. (2003). Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. Journal of Physics D: Applied Physics, 36, 2584.CrossRefGoogle Scholar
  27. 27.
    Lisdat, F., & Schäfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 391, 1555.CrossRefGoogle Scholar
  28. 28.
    Hondroulis, E., Zhang, R., Zhang, C., Chen, C., Ino, K., Matsue, T., & Li, C.-Z. (2014). Immuno nanoparticles integrated electrical control of targeted cancer cell development using whole cell bioelectronic device. Theranostics, 4, 919.CrossRefGoogle Scholar
  29. 29.
    Li, H., Huang, Y., Zhang, B., Yang, D., Zhu, X., & Li, G. (2014). A new method to assay protease based on amyloid misfolding: Application to prostate cancer diagnosis using a panel of proteases biomarkers. Theranostics, 4, 701.CrossRefGoogle Scholar
  30. 30.
    Konings, M., Mali, W. T. M., & Viergever, M. A. (1997). Development of an intravascular impedance catheter for detection of fatty lesions in arteries. IEEE Transactions on Medical Imaging, 16, 439–446.CrossRefGoogle Scholar
  31. 31.
    Meissner, R., Eker, B., Kasi, H., Bertsch, A., & Renaud, P. (2011). Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening. Lab on a Chip, 11, 2352–2361.CrossRefGoogle Scholar
  32. 32.
    Packard, R. R. S., Luo, Y., Abiri, P., Jen, N., Aksoy, O., Suh, W. M., Tai, Y.-C., & Hsiai, T. K. (2017). 3-D electrochemical impedance spectroscopy mapping of arteries to detect metabolically active but angiographically invisible atherosclerotic lesions. Theranostics, 7, 2431.CrossRefGoogle Scholar
  33. 33.
    Streitner, I., Goldhofer, M., Cho, S., Thielecke, H., Kinscherf, R., Streitner, F., Metz, J., Haase, K. K., Borggrefe, M., & Suselbeck, T. (2009). Electric impedance spectroscopy of human atherosclerotic lesions. Atherosclerosis, 206, 464–468.CrossRefGoogle Scholar
  34. 34.
    Süselbeck, T., Thielecke, H., Köchlin, J., Cho, S., Weinschenk, I., Metz, J., Borggrefe, M., & Haase, K. K. (2005). Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system. Basic Research in Cardiology, 100, 446–452.CrossRefGoogle Scholar
  35. 35.
    Grimnes, S., & Martinsen, Ø. G. (2006). Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. Journal of Physics D: Applied Physics, 40, 9.CrossRefGoogle Scholar
  36. 36.
    Geselowitz, D. B. (1971). An application of electrocardiographic lead theory to impedance plethysmography. IEEE Transactions on Biomedical Engineering, BME-18, 38–41.CrossRefGoogle Scholar
  37. 37.
    Yu, F., Li, R., Ai, L., Edington, C., Yu, H., Barr, M., Kim, E., & Hsiai, T. K. (2011). Electrochemical impedance spectroscopy to assess vascular oxidative stress. Annals of Biomedical Engineering, 39, 287–296.CrossRefGoogle Scholar
  38. 38.
    Yu, F., Dai, X., Beebe, T., & Hsiai, T. (2011). Electrochemical impedance spectroscopy to characterize inflammatory atherosclerotic plaques. Biosensors and Bioelectronics, 30, 165–173.CrossRefGoogle Scholar
  39. 39.
    Stary, H. C. (2000). Natural history and histological classification of atherosclerotic lesions: An update. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1177–1178.CrossRefGoogle Scholar
  40. 40.
    Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., & Islam, A. (2011). Epidermal electronics. Science, 333, 838–843.CrossRefGoogle Scholar
  41. 41.
    Cao, H., Yu, F., Zhao, Y., Scianmarello, N., Lee, J., Dai, W., Jen, N., Beebe, T., Li, R., & Ebrahimi, R. (2014). Stretchable electrochemical impedance sensors for intravascular detection of lipid-rich lesions in New Zealand White rabbits. Biosensors and Bioelectronics, 54, 610–616.CrossRefGoogle Scholar
  42. 42.
    Grüntzig, A. (1978). Transluminal dilatation of coronary-artery stenosis. The Lancet, 311, 263.CrossRefGoogle Scholar
  43. 43.
    Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., & Kappenberger, L. (1987). Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty. New England Journal of Medicine, 316, 701–706.CrossRefGoogle Scholar
  44. 44.
    Indolfi, C., De Rosa, S., & Colombo, A. (2016). Bioresorbable vascular scaffolds—Basic concepts and clinical outcome. Nature Reviews Cardiology, 13, 719.CrossRefGoogle Scholar
  45. 45.
    Iqbal, J., Chamberlain, J., Francis, S. E., & Gunn, J. (2016). Role of animal models in coronary stenting. Annals of Biomedical Engineering, 44, 453–465.CrossRefGoogle Scholar
  46. 46.
    Levine, G. N., Bates, E. R., Blankenship, J. C., Bailey, S. R., Bittl, J. A., Cercek, B., Chambers, C. E., Ellis, S. G., Guyton, R. A., & Hollenberg, S. M. (2011). 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Journal of the American College of Cardiology, 58, e44–e122.CrossRefGoogle Scholar
  47. 47.
    Packard, R. R. S., Zhang, X., Luo, Y., Ma, T., Jen, N., Ma, J., Demer, L. L., Zhou, Q., Sayre, J. W., & Li, R. (2016). Two-point stretchable electrode array for endoluminal electrochemical impedance spectroscopy measurements of lipid-laden atherosclerotic plaques. Annals of Biomedical Engineering, 44, 2695–2706.CrossRefGoogle Scholar
  48. 48.
    Chang, J. H.-C., Huang, R., & Tai, Y.-C. (2011). High density 256-channel chip integration with flexible parylene pocket. In Solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011 16th international (pp. 378–381).CrossRefGoogle Scholar
  49. 49.
    Koike, T., Liang, J., Wang, X., Ichikawa, T., Shiomi, M., Sun, H., Watanabe, T., Liu, G., & Fan, J. (2005). Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase. Cardiovascular Research, 65, 524–534.CrossRefGoogle Scholar
  50. 50.
    Yeo, W. H., Kim, Y. S., Lee, J., Ameen, A., Shi, L., Li, M., Wang, S., Ma, R., Jin, S. H., & Kang, Z. (2013). Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials, 25, 2773–2778.CrossRefGoogle Scholar
  51. 51.
    Chang, J. H.-C., Liu, Y., Kang, D., & Tai, Y.-C. (2013). Reliable packaging for parylene-based flexible retinal implant. In Solid-state sensors, actuators and microsystems (Transducers & Eurosensors XXVII), 2013 Transducers & Eurosensors XXVII: The 17th international conference on (pp. 2612–2615).CrossRefGoogle Scholar
  52. 52.
    Fakirov, S., Evstatiev, M., & Petrovich, S. (1993). Microfibrillar reinforced composites from binary and ternary blends of polyesters and nylon 6. Macromolecules, 26, 5219–5226.CrossRefGoogle Scholar
  53. 53.
    Lin, J. C.-H., Lam, G., & Tai, Y.-C. (2012). Viscoplasticity of parylene-C film at body temperature. In Micro electro mechanical systems (MEMS), 2012 IEEE 25th international conference on (pp. 476–479).CrossRefGoogle Scholar
  54. 54.
    Ebrahimi, A. P. (2009). Mechanical properties of normal and diseased cerebrovascular system. Journal of Vascular and Interventional Neurology, 2, 155.Google Scholar
  55. 55.
    Enos, W. F., Holmes, R. H., & Beyer, J. (1953). Coronary disease among United States soldiers killed in action in Korea: Preliminary report. Journal of the American Medical Association, 152, 1090–1093.CrossRefGoogle Scholar
  56. 56.
    Dweck, M. R., Doris, M. K., Motwani, M., Adamson, P. D., Slomka, P., Dey, D., Fayad, Z. A., Newby, D. E., & Berman, D. (2016). Imaging of coronary atherosclerosis—Evolution towards new treatment strategies. Nature Reviews Cardiology, 13, 533.CrossRefGoogle Scholar
  57. 57.
    De Bruyne, B., Pijls, N. H., Kalesan, B., Barbato, E., Tonino, P. A., Piroth, Z., Jagic, N., Möbius-Winkler, S., Rioufol, G., & Witt, N. (2012). Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. New England Journal of Medicine, 367, 991–1001.CrossRefGoogle Scholar
  58. 58.
    Yamada, R., Okura, H., Miyamoto, Y., Kawamoto, T., Neishi, Y., Hayashida, A., Tsuchiya, T., Nezuo, S., & Yoshida, K. (2011). A newly developed radio frequency signal-based intravascular ultrasound tissue characterization: A comparison between imap and integrated backscatter intravascular ultrasound. Journal of the American College of Cardiology, 57, E1882.CrossRefGoogle Scholar
  59. 59.
    Li, X., Yin, J., Hu, C., Zhou, Q., Shung, K. K., & Chen, Z. (2010). High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Applied Physics Letters, 97, 133702.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yuan Luo
    • 1
  • Rene Packard
    • 2
  • Parinaz Abiri
    • 2
  • Y. C. Tai
    • 1
  • Tzung K. Hsiai
    • 1
    • 2
    Email author
  1. 1.Medical Engineering, California Institute of TechnologyPasadenaUSA
  2. 2.Department of BioengineeringUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations