Advertisement

Visual Abstraction

Chapter
  • 506 Downloads

Abstract

In this chapter, we revisit the concept of abstraction as it is used in visualization and put it on a solid formal footing. While the term “abstraction” is utilized in many scientific disciplines, arts, as well as everyday life, visualization inherits the notion of data abstraction or class abstraction from computer science, topological abstraction from mathematics, and visual abstraction from arts. All these notions have a lot in common, yet there is a major discrepancy in the terminology and basic understanding about visual abstraction in the context of visualization. We thus root the notion of abstraction in the philosophy of science, clarify the basic terminology, and provide crisp definitions of visual abstraction as a process. Furthermore, we clarify how it relates to similar terms often used interchangeably in the field of visualization. Visual abstraction is characterized by a conceptual space where this process exists, by the purpose it should serve, and by the perceptual and cognitive qualities of the beholder. These characteristics can be used to control the process of visual abstraction to produce effective and informative visual representations.

Notes

Acknowledgements

The authors would like to thank Jos Roerdink, Helwig Hauser, Stefan Bruckner, Hans-Christian Hege, and Torsten Möller for fruitful discussion that helped shaping the chapter. Thanks to Peter Mindek for illustrating the abstraction space in Fig. 2.1. This work was funded through the ILLUSTRARE grant by both the Austrian Science Fund (FWF; I 2953-N31) and the French National Research Agency (ANR; ANR-16-CE91-0011-01).

References

  1. 1.
    Arnheim, R.: Visual Thinking. University of California Press, Berkeley (1969)Google Scholar
  2. 2.
    Buttenfield, B.P., McMaster, R.B. (eds.): Map Generalization: Making Rules for Knowledge Representation. Longman Scientific & Technical, Harlow (1991)Google Scholar
  3. 3.
    Chen, M., Golan, A.: What may visualization processes optimize? IEEE Trans. Vis. Comput. Graph. 22(12), 2619–2632 (2016).  https://doi.org/10.1109/TVCG.2015.2513410
  4. 4.
    Chen, M., Gaither, K., John, N.W., McCann, B.: An information-theoretic approach to the cost-benefit analysis of visualization in virtual environments. IEEE Trans. Vis. Comput. Graph. 25(1), 32–42 (2019).  https://doi.org/10.1109/TVCG.2018.2865025
  5. 5.
    Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. J. Am. Stat. Assoc. 68(342), 361–368 (1973).  https://doi.org/10.1080/01621459.1973.10482434
  6. 6.
    Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005).  https://doi.org/10.1007/s00371-005-0308-0
  7. 7.
    Frege, G.: Der Gedanke [The thought]. Beiträge zur Philosophie des deutschen Idealismus 1(2), 58–77 (1918). https://www.jstor.org/stable/2251513. English translation in Mind: Q. Rev. Psychol. Philos. 65(259), 289–311 (1956)
  8. 8.
    Isenberg, T.: Capturing the essence of shape of polygonal meshes. Ph.D. thesis, Otto-von-Guericke University of Magdeburg, Germany (2004).  https://doi.org/10.25673/5454
  9. 9.
    Leppänen, M.: Towards an abstraction ontology. In: Duží, M., Jaakkola, H., Kiyoki, Y., Kangassalo, H. (eds.) Information Modelling and Knowledge Bases XVIII, Frontiers in Artificial Intelligence and Applications, vol. 154, pp. 166–185. IOS Press, Amsterdam (2007). http://ebooks.iospress.nl/volumearticle/3413
  10. 10.
    Lewis, D.K.: On the Plurality of Worlds. Blackwell, Oxford (1986)Google Scholar
  11. 11.
    Miao, H., De Llano, E., Isenberg, T., Gröller, M.E., Barišić, I., Viola, I.: DimSUM: dimension and scale unifying maps for visual abstraction of DNA origami structures. Comput. Graph. Forum 37(3), 403–413 (2018).  https://doi.org/10.1111/cgf.13429
  12. 12.
    Miao, H., De Llano, E., Sorger, J., Ahmadi, Y., Kekic, T., Isenberg, T., Gröller, M.E., Barišić, I., Viola, I.: Multiscale visualization and scale-adaptive modification of DNA nanostructures. IEEE Trans. Vis. Comput. Graph. 24(1), 1014–1024 (2018).  https://doi.org/10.1109/TVCG.2017.2743981
  13. 13.
    Mohammed, H., Al-Awami, A.K., Beyer, J., Cali, C., Magistretti, P., Pfister, H., Hadwiger, M.: Abstractocyte: a visual tool for exploring nanoscale astroglial cells. IEEE Trans. Vis. Comput. Graph. 24(1), 853–861 (2018).  https://doi.org/10.1109/TVCG.2017.2744278
  14. 14.
    Mosby: Mosby’s Medical Dictionary, 9th edn. Elsevier, Amsterdam (2012)Google Scholar
  15. 15.
    Munzner, T.: Visualization Analysis and Design. A K Peters Visualization Series. CRC Press, Boca Raton (2014).  https://doi.org/10.1201/b17511
  16. 16.
    Ogden, C.K., Richards, I.A.: The Meaning of Meaning: A Study of the Influence of Language upon Thought and of the Science of Symbolism. Kegan Paul, London (1923)Google Scholar
  17. 17.
    Stanford encyclopedia of philosophy. Web site. https://plato.stanford.edu/contents.html
  18. 18.
    Thompson, P.: Margaret Thatcher: a new illusion. Perception 9(4), 483–484 (1980).  https://doi.org/10.1068/p090483
  19. 19.
    Viola, I., Isenberg, T.: Pondering the concept of abstraction in (illustrative) visualization. IEEE Trans. Vis. Comput. Graph. 24(9), 2573–2588 (2018).  https://doi.org/10.1109/TVCG.2017.2747545
  20. 20.
    van der Zwan, M., Lueks, W., Bekker, H., Isenberg, T.: Illustrative molecular visualization with continuous abstraction. Comput. Graph. Forum 30(3), 683–690 (2011).  https://doi.org/10.1111/j.1467-8659.2011.01917.x

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.University of OxfordOxfordUK
  3. 3.Inria SaclayPalaiseauFrance

Personalised recommendations