The Five Faces of Notch Signalling During Drosophila melanogaster Embryonic CNS Development

  • Shahrzad BahrampourEmail author
  • Stefan ThorEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1218)


During central nervous system (CNS) development, a complex series of events play out, starting with the establishment of neural progenitor cells, followed by their asymmetric division and formation of lineages and the differentiation of neurons and glia. Studies in the Drosophila melanogaster embryonic CNS have revealed that the Notch signal transduction pathway plays at least five different and distinct roles during these events. Herein, we review these many faces of Notch signalling and discuss the mechanisms that ensure context-dependent and compartment-dependent signalling. We conclude by discussing some outstanding issues regarding Notch signalling in this system, which likely have bearing on Notch signalling in many species.


CNS development Notch signalling 


Author Contributions

SB and ST generated the figures and wrote the manuscript.

Competing Interests

No competing interests declared.


Funding was provided by the Swedish Research Council (2018-00694) to SB and by support from the University of Queensland to ST.


  1. Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132:247–258PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allan DW, Thor S (2015) Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. Wiley Interdiscip Rev Dev Biol 4:505–528PubMedPubMedCentralCrossRefGoogle Scholar
  3. Artavanis-Tsakonas S, Muskavitch MA, Yedvobnick B (1983) Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci U S A 80:1977–1981PubMedPubMedCentralCrossRefGoogle Scholar
  4. Babaoglan AB, O’Connor-Giles KM, Mistry H, Schickedanz A, Wilson BA, Skeath JB (2009) Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions. Development 136:4089–4098PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachmann A, Knust E (1998) Dissection of cis-regulatory elements of the Drosophila gene Serrate. Dev Genes Evol 208:346–351PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bahrampour S, Thor S (2016) Ctr9, a key component of the Paf1 complex, affects proliferation and terminal differentiation in the developing Drosophila nervous system. G3 (Bethesda) 6:3229–3239PubMedCentralCrossRefGoogle Scholar
  7. Bailey AM, Posakony JW (1995) Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9:2609–2622PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baumgardt M, Karlsson D, Terriente J, Diaz-Benjumea FJ, Thor S (2009) Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139:969–982PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baumgardt M, Karlsson D, Salmani BY, Bivik C, Macdonald RB, Gunnar E, Thor S (2014) Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Dev Cell 30:192–208PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bender LB, Kooh PJ, Muskavitch MA (1993) Complex function and expression of Delta during Drosophila oogenesis. Genetics 133:967–978PubMedPubMedCentralGoogle Scholar
  11. Bhat KM (1999) Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays 21:472–485PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bhat KM, Gaziova I, Katipalla S (2011) Neuralized mediates asymmetric division of neural precursors by two distinct and sequential events: promoting asymmetric localization of Numb and enhancing activation of Notch-signaling. Dev Biol 351:186–198PubMedCrossRefPubMedCentralGoogle Scholar
  13. Birkholz O, Rickert C, Berger C, Urbach R, Technau GM (2013) Neuroblast pattern and identity in the Drosophila tail region and role of double sex in the survival of sex-specific precursors. Development 140:1830–1842PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bivik Stadler C, Arefin B, Ekman H, Thor S (2019) PIP degron-stabilized Dacapo/p21(Cip1) and mutations in ago act in an anti- versus pro-proliferative manner, yet both trigger an increase in Cyclin E levels. Development 146(13):dev175927PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bivik C, Macdonald RB, Gunnar E, Mazouni K, Schweisguth F, Thor S (2016) Control of neural daughter cell proliferation by multi-level Notch/Su(H)/E(spl)-HLH signaling. PLoS Genet 12:e1005984PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol 68:1185–1195PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cau E, Blader P (2009) Notch activity in the nervous system: to switch or not switch? Neural Dev 4:36PubMedPubMedCentralCrossRefGoogle Scholar
  19. Choksi SP, Southall TD, Bossing T, Edoff K, de Wit E, Fischer BE, van Steensel B, Micklem G, Brand AH (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 11:775–789PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cohen SM, Jurgens G (1990) Mediation of Drosophila head development by gap-like segmentation genes. Nature 346:482–485PubMedCrossRefPubMedCentralGoogle Scholar
  21. Crowner D, Le Gall M, Gates MA, Giniger E (2003) Notch steers Drosophila ISNb motor axons by regulating the Abl signaling pathway. Curr Biol 13:967–972PubMedCrossRefPubMedCentralGoogle Scholar
  22. Deblandre GA, Lai EC, Kintner C (2001) Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev Cell 1:795–806PubMedCrossRefPubMedCentralGoogle Scholar
  23. Delidakis C, Preiss A, Hartley DA, Artavanistsakonas S (1991) 2 genetically and molecularly distinct functions involved in early neurogenesis reside within the enhancer of split locus of Drosophila-melanogaster. Genetics 129:803–823PubMedPubMedCentralGoogle Scholar
  24. Doe CQ (1996) Asymmetric cell division and neurogenesis. Curr Opin Genet Dev 6:562–566PubMedCrossRefPubMedCentralGoogle Scholar
  25. Doe CQ, Bowerman B (2001) Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 13:68–75PubMedCrossRefPubMedCentralGoogle Scholar
  26. Doe CQ, Technau GM (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci 16:510–514PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fleming RJ, Scottgale TN, Diederich RJ, Artavanis-Tsakonas S (1990) The gene Serrate encodes a putative EGF-like transmembrane protein essential for proper ectodermal development in Drosophila melanogaster. Genes Dev 4:2188–2201PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79:273–282PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fuerstenberg S, Broadus J, Doe CQ (1998) Asymmetry and cell fate in the Drosophila embryonic CNS. Int J Dev Biol 42:379–383PubMedGoogle Scholar
  31. Garces A, Thor S (2006) Specification of Drosophila aCC motoneuron identity by a genetic cascade involving even-skipped, grain and zfh1. Development 133:1445–1455PubMedCrossRefGoogle Scholar
  32. Giniger E (1998) A role for Abl in Notch signaling. Neuron 20:667–681PubMedCrossRefGoogle Scholar
  33. Giniger E (2012) Notch signaling and neural connectivity. Curr Opin Genet Dev 22:339–346PubMedPubMedCentralCrossRefGoogle Scholar
  34. Giniger E, Jan LY, Jan YN (1993) Specifying the path of the intersegmental nerve of the Drosophila embryo: a role for Delta and Notch. Development 117:431–440PubMedGoogle Scholar
  35. Griffiths RL, Hidalgo A (2004) Prospero maintains the mitotic potential of glial precursors enabling them to respond to neurons. EMBO J 23:2440–2450PubMedPubMedCentralCrossRefGoogle Scholar
  36. Griffiths RC, Benito-Sipos J, Fenton JC, Torroja L, Hidalgo A (2007) Two distinct mechanisms segregate Prospero in the longitudinal glia underlying the timing of interactions with axons. Neuron Glia Biol 3:75–88PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gunnar E, Bivik C, Starkenberg A, Thor S (2016) sequoia controls the type I>0 daughter proliferation switch in the developing Drosophila nervous system. Development 143:3774–3784PubMedCrossRefGoogle Scholar
  38. Handford PA, Korona B, Suckling R, Redfield C, Lea SM (2018) Structural insights into Notch receptor-ligand interactions. Adv Exp Med Biol 1066:33–46PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377:627–630PubMedCrossRefGoogle Scholar
  40. Hirth F, Reichert H (1999) Conserved genetic programs in insect and mammalian brain development. Bioessays 21:677–684PubMedCrossRefGoogle Scholar
  41. Jennings B, Preiss A, Delidakis C, Bray S (1994) The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120:3537–3548PubMedGoogle Scholar
  42. Johansen KM, Fehon RG, Artavanis-Tsakonas S (1989) The notch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells during Drosophila development. J Cell Biol 109:2427–2440PubMedCrossRefGoogle Scholar
  43. Kannan R, Song JK, Karpova T, Clarke A, Shivalkar M, Wang B, Kotlyanskaya L, Kuzina I, Gu Q, Giniger E (2017) The Abl pathway bifurcates to balance Enabled and Rac signaling in axon patterning in Drosophila. Development 144:487–498PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kannan R, Cox E, Wang L, Kuzina I, Gu Q, Giniger E (2018) Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance. Development 145(2):dev151548PubMedPubMedCentralGoogle Scholar
  45. Kidd S, Baylies MK, Gasic GP, Young MW (1989) Structure and distribution of the Notch protein in developing Drosophila. Genes Dev 3:1113–1129PubMedCrossRefGoogle Scholar
  46. Klambt C, Knust E, Tietze K, Campos-Ortega JA (1989) Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J 8:203–210PubMedPubMedCentralCrossRefGoogle Scholar
  47. Knoblich JA, Jan LY, Jan YN (1995) Asymmetric segregation of Numb and Prospero during cell division. Nature 377:624–627PubMedCrossRefGoogle Scholar
  48. Knust E, Schrons H, Grawe F, Campos-Ortega JA (1992) Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics 132:505–518PubMedPubMedCentralGoogle Scholar
  49. Kopczynski CC, Muskavitch MA (1989) Complex spatio-temporal accumulation of alternative transcripts from the neurogenic gene Delta during Drosophila embryogenesis. Development 107:623–636PubMedGoogle Scholar
  50. Kuzina I, Song JK, Giniger E (2011) How Notch establishes longitudinal axon connections between successive segments of the Drosophila CNS. Development 138:1839–1849PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lai EC (2002) Protein degradation: four E3s for the notch pathway. Curr Biol 12:R74–R78PubMedCrossRefGoogle Scholar
  52. Lai EC, Deblandre GA, Kintner C, Rubin GM (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 1:783–794PubMedCrossRefGoogle Scholar
  53. Landgraf M, Thor S (2006) Development of Drosophila motoneurons: specification and morphology. Semin Cell Dev Biol 17:3–11PubMedCrossRefGoogle Scholar
  54. Landgraf M, Bossing T, Technau GM, Bate M (1997) The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J Neurosci 17:9642–9655PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lawrence PA, Sanson B, Vincent JP (1996) Compartments, wingless and engrailed: patterning the ventral epidermis of Drosophila embryos. Development 122:4095–4103PubMedGoogle Scholar
  56. Le Gall M, de Mattei C, Giniger E (2008) Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 313:556–567PubMedCrossRefGoogle Scholar
  57. Lecourtois M, Schweisguth F (1995) The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev 9:2598–2608PubMedCrossRefGoogle Scholar
  58. Li L, Vaessin H (2000) Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev 14:147–151PubMedPubMedCentralGoogle Scholar
  59. Lieber T, Kidd S, Young MW (2002) kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 16:209–221PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lundell MJ, Lee HK, Perez E, Chadwell L (2003) The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila. Development 130:4109–4121PubMedCrossRefGoogle Scholar
  61. Miguel-Aliaga I, Thor S (2004) Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development 131:6093–6105PubMedCrossRefGoogle Scholar
  62. Miguel-Aliaga I, Thor S (2009) Programmed cell death in the nervous system–a programmed cell fate? Curr Opin Neurobiol 19:127–133PubMedCrossRefGoogle Scholar
  63. Miller AC, Lyons EL, Herman TG (2009) cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr Biol 19:1378–1383PubMedPubMedCentralCrossRefGoogle Scholar
  64. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–375PubMedCrossRefGoogle Scholar
  65. Monastirioti M, Giagtzoglou N, Koumbanakis KA, Zacharioudaki E, Deligiannaki M, Wech I, Almeida M, Preiss A, Bray S, Delidakis C (2010) Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis. Development 137:191–201PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nakao K, Campos-Ortega JA (1996) Persistent expression of genes of the enhancer of split complex suppresses neural development in Drosophila. Neuron 16:275–286PubMedCrossRefGoogle Scholar
  67. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124:973–983PubMedCrossRefGoogle Scholar
  68. Newsome TP, Schmidt S, Dietzl G, Keleman K, Asling B, Debant A, Dickson BJ (2000) Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101:283–294PubMedCrossRefGoogle Scholar
  69. Nicholson SC, Nicolay BN, Frolov MV, Moberg KH (2011) Notch-dependent expression of the archipelago ubiquitin ligase subunit in the Drosophila eye. Development 138:251–260PubMedPubMedCentralCrossRefGoogle Scholar
  70. O’Connor-Giles KM, Skeath JB (2003) Numb inhibits membrane localization of Sanpodo, a four-pass transmembrane protein, to promote asymmetric divisions in Drosophila. Dev Cell 5:231–243PubMedCrossRefPubMedCentralGoogle Scholar
  71. Oellers N, Dehio M, Knust E (1994) bHLH proteins encoded by the Enhancer of split complex of Drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol Gen Genet 244:465–473PubMedCrossRefGoogle Scholar
  72. Okajima T, Xu A, Irvine KD (2003) Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J Biol Chem 278:42340–42345PubMedCrossRefGoogle Scholar
  73. Pan D, Rubin GM (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280PubMedCrossRefGoogle Scholar
  74. Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates Notch-ligand interactions. Nature 387:908–912PubMedCrossRefGoogle Scholar
  75. Pavlopoulos E, Pitsouli C, Klueg KM, Muskavitch MA, Moschonas NK, Delidakis C (2001) neuralized Encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell 1:807–816PubMedCrossRefGoogle Scholar
  76. Petcherski AG, Kimble J (2000) Mastermind is a putative activator for Notch. Curr Biol 10:R471–R473PubMedCrossRefGoogle Scholar
  77. Pitsouli C, Delidakis C (2005) The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 132:4041–4050PubMedCrossRefGoogle Scholar
  78. Poulson DF (1937) Chromosomal deficiencies and the embryonic development of Drosophila Melanogaster. Proc Natl Acad Sci U S A 23:133–137PubMedPubMedCentralCrossRefGoogle Scholar
  79. Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283:91–94PubMedCrossRefGoogle Scholar
  80. Rogulja-Ortmann A, Luer K, Seibert J, Rickert C, Technau GM (2007) Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development 134:105–116PubMedCrossRefPubMedCentralGoogle Scholar
  81. Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126:4653–4689PubMedPubMedCentralGoogle Scholar
  82. Schweisguth F, Posakony JW (1994) Antagonistic activities of Suppressor of Hairless and Hairless control alternative cell fates in the Drosophila adult epidermis. Development 120:1433–1441PubMedPubMedCentralGoogle Scholar
  83. Simoes S, Oh Y, Wang MFZ, Fernandez-Gonzalez R, Tepass U (2017) Myosin II promotes the anisotropic loss of the apical domain during Drosophila neuroblast ingression. J Cell Biol 216:1387–1404PubMedPubMedCentralCrossRefGoogle Scholar
  84. Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays 21:922–931PubMedCrossRefPubMedCentralGoogle Scholar
  85. Skeath JB, Doe CQ (1998) Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development 125:1857–1865PubMedPubMedCentralGoogle Scholar
  86. Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15PubMedCrossRefPubMedCentralGoogle Scholar
  87. Song JK, Giniger E (2011) Noncanonical Notch function in motor axon guidance is mediated by Rac GTPase and the GEF1 domain of Trio. Dev Dyn 240:324–332PubMedPubMedCentralCrossRefGoogle Scholar
  88. Spana EP, Doe CQ (1995) The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121:3187–3195PubMedPubMedCentralGoogle Scholar
  89. Spana EP, Doe CQ (1996) Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17:21–26PubMedCrossRefPubMedCentralGoogle Scholar
  90. Stacey SM, Muraro NI, Peco E, Labbe A, Thomas GB, Baines RA, van Meyel DJ (2010) Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J Neurosci 30:14446–14457PubMedPubMedCentralCrossRefGoogle Scholar
  91. Thomas GB, van Meyel DJ (2007) The glycosyltransferase Fringe promotes Delta-Notch signaling between neurons and glia, and is required for subtype-specific glial gene expression. Development 134:591–600PubMedCrossRefPubMedCentralGoogle Scholar
  92. Thomas U, Speicher SA, Knust E (1991) The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111:749–761PubMedPubMedCentralGoogle Scholar
  93. Thor S (1995) The genetics of brain-development – conserved programs in flies and mice. Neuron 15:975–977PubMedCrossRefPubMedCentralGoogle Scholar
  94. Thor S, Thomas J (2002) Motor neuron specification in worms, flies and mice: conserved and ‘lost’ mechanisms. Curr Opin Genet Dev 12:558–564PubMedCrossRefPubMedCentralGoogle Scholar
  95. Ulvklo C, Macdonald R, Bivik C, Baumgardt M, Karlsson D, Thor S (2012) Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development 139:678–689PubMedCrossRefPubMedCentralGoogle Scholar
  96. Urbach R, Schnabel R, Technau GM (2003) The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130:3589–3606PubMedCrossRefPubMedCentralGoogle Scholar
  97. Urbach R, Jussen D, Technau GM (2016) Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila. Development 143:1290–1301PubMedPubMedCentralCrossRefGoogle Scholar
  98. Varshney S, Stanley P (2018) Multiple roles for O-glycans in Notch signalling. FEBS Lett 592:3819–3834PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vassin H, Bremer KA, Knust E, Campos-Ortega JA (1987) The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J 6:3431–3440PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wang Y, Shao L, Shi S, Harris RJ, Spellman MW, Stanley P, Haltiwanger RS (2001) Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J Biol Chem 276:40338–40345PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wheeler SR, Stagg SB, Crews ST (2009) MidExDB: a database of Drosophila CNS midline cell gene expression. BMC Dev Biol 9:56PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124:985–996PubMedCrossRefPubMedCentralGoogle Scholar
  104. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26:484–489PubMedCrossRefPubMedCentralGoogle Scholar
  105. Yeh CH, Bellon M, Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 17:115PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zweifel ME, Leahy DJ, Hughson FM, Barrick D (2003) Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Sci 12:2622–2632PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The Hospital for Sick Children, Peter Gilgan Center for Research and LearningTorontoCanada
  2. 2.Karolinska Institutet, Department of Cell and Molecular Biology (CMB)StockholmSweden
  3. 3.School of Biomedical Sciences, University of QueenslandSt LuciaAustralia

Personalised recommendations