Advertisement

Determination of Nano-aerosol Size Distribution Using Differential Evolution

  • Lucas Camargos Borges
  • Eduarda Cristina de Matos Camargo
  • João Jorge Ribeiro Damasceno
  • Fabio de Oliveira Arouca
  • Fran Sérgio LobatoEmail author
Chapter
  • 15 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 872)

Abstract

Nanotechnology characterizes an important area in engineering due to various applications that can be found, such as electronics and pharmaceutical industries, development of air filters, among others. From the environmental point of view, because nanometric particles provide special characteristics to the products, emission of these particles into the air must be limited. Among the approaches proposed in the literature, the electrical mobility technique is an emerging strategy used to ensure an aerosol stream with monodispersed particles. This technique is based on the ability of a charged particle to cross an electrical field. Thus, depending on the size of the particles, the bigger ones will arrive later in the central electrode than the smaller ones, and only a narrow band of sizes will be collected in a slit located at the bottom of the equipment. In order to characterize the relation between the monodispersed and polydispersed aerosol stream, an inverse problem is formulated and solved by using differential evolution. The objective function consists of determining transfer functions that minimize the sum of difference between predicted and experimental concentrations of NaCl obtained by a differential mobility analyzer. The results demonstrated that the proposed methodology was able to obtain a good approximation for two classical transfer functions.

Keywords

Monosized nanoparticles Differential mobility analyzer Inverse problem Differential evolution 

Notes

Acknowledgements

The authors would like to acknowledge the financial support from FAPEMIG and CNPq agencies.

References

  1. 1.
    Kauffeldt, T., Kleinwechter, H., Schmidt-Ott, A.: Absolute on-line measurement of the magnetic moment of aerosol particles. Chem. Eng. Commun. 151(1), 169–185 (1995)CrossRefGoogle Scholar
  2. 2.
    Gonzalez, D., Nasibulin, A.G., Jiang, H., Queipo, P.: Electrospraying of ferritin solutions for the production of monodisperse iron oxide nanoparticles. Chem. Eng. Commun. 194, 901–912 (2007)CrossRefGoogle Scholar
  3. 3.
    Lee, H., You, S., Pikhitsa, P.V., Kim, J., Kwon, S., Woo, C.G., Choi, M.: Three-dimensional assembly of nanoparticles from charged aerosols. Nano Lett. 11(1), 119–124 (2011)CrossRefGoogle Scholar
  4. 4.
    Pui, D.Y.H, Chen, D.R.: Nanometer particles: a new frontier for multidisciplinary research. J. Aerosol Sci. 28, 539–554 (1997)CrossRefGoogle Scholar
  5. 5.
    Shi, J., Votruba, A.R., Farokhzad, O.C., Langer, R.: Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10, 3223–3230 (2010)CrossRefGoogle Scholar
  6. 6.
    Seto, T., Kawakami, Y., Suzuki, N., Hirasawa, M., Aya, N.: Laser synthesis of uniform silicon single nanodots. Nano Lett. 6, 315–318 (2001)CrossRefGoogle Scholar
  7. 7.
    Rosati, J.A., Leith, D., Kim, C.S.: Aerosol Sci. Technol. 37, 528–535 (2003)CrossRefGoogle Scholar
  8. 8.
    Intra, P., Tippayawong, N.: Brownian diffusion effect on nanometer aerosol classification in electrical mobility spectrometer. Korean J. Chem. Eng. 26(1), 269–276 (2009)CrossRefGoogle Scholar
  9. 9.
    Luond, F., Schlatter, J.: Improved monodispersity of size selected aerosol particles with a new charging and selection scheme for tandem DMA setup. J. Aerosol Sci. 62, 40–55 (2013)CrossRefGoogle Scholar
  10. 10.
    Kievit, O., Weiss, M., Verheijen, P.J.T., Marijnissen, J.C.M., Scarlett, B.: The online chemical analysis of single particles using aerosol beams and time of flight mass spectrometry. Chem. Eng. Commun. 151(1), 79–100 (1995)CrossRefGoogle Scholar
  11. 11.
    Zhao, Z.M., Pfeffer, R.: A semi-empirical approach to predict the total collection efficiency of electrostatic precipitators. Chem. Eng. Commun. 148–150(1), 315–331 (1995)CrossRefGoogle Scholar
  12. 12.
    Hagwood, C.: The DMA transfer function with Brownian motion a trajectory/Monte-Carlo approach. Aerosol Sci. Technol. 30(1), 40–61 (1999)CrossRefGoogle Scholar
  13. 13.
    Martinsson, B.G., Karlsson, M.N.A., Frank, G.: Methodology to estimate the transfer function of individual differential mobility analyzers. Aerosol Sci. Technol. 35(4), 815–823 (2001)CrossRefGoogle Scholar
  14. 14.
    Seol, K.S., Yabumoto, J., Takeuchi, K.: A differential mobility analyzer with adjustable column length for wide particle-size-range measurements. Aerosol Sci. 33, 1481–1492 (2002)CrossRefGoogle Scholar
  15. 15.
    Karlsson, M.N.A., Martinsson, B.G.: Methods to measure and predict the transfer function size dependence of individual DMAs. Aerosol Sci. 34, 603–625 (2003)CrossRefGoogle Scholar
  16. 16.
    Song, D.K., Lee, H.M., Chang, H., Kim, S.S., Shimada, M., Okuyama, K.: Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. Aerosol Sci. 37, 598–615 (2006)CrossRefGoogle Scholar
  17. 17.
    Song, D.K., Dhaniyala, S.: Nanoparticle cross-flow differential mobility analyzer (NCDMA): theory and design. Aerosol Sci. 38, 964–979 (2007)CrossRefGoogle Scholar
  18. 18.
    Ramechecandane, S., Beghein, C., Allard, F., Bombardier, P.: Modelling ultrafine/nano particle dispersion in two differential mobility analyzers (M-DMA and L-DMA). Build. Environ. 46, 2255–2266 (2011)CrossRefGoogle Scholar
  19. 19.
    Cai, R., Chen, D-R., Hao, J., Jiang, J.: A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing. J. Aerosol Sci. 106, 111–119 (2017)CrossRefGoogle Scholar
  20. 20.
    Dalcin, M.G., Nunes, D.M., Damasceno, J.J.R., Arouca, F.O.: Project and construction of a differential mobility analyzer to produce monosized nanoparticles materials. Sci. Forum 802, 197–202 (2014)CrossRefGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, 12, pp. 1–16 (1995)Google Scholar
  22. 22.
    Camargo, E.C.M.: Performance evaluation of a low cost electrostatic analyzer for classification of nanoparticles sizes. Federal University de Uberlândia (2019, In Portuguese)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lucas Camargos Borges
    • 1
  • Eduarda Cristina de Matos Camargo
    • 1
  • João Jorge Ribeiro Damasceno
    • 1
  • Fabio de Oliveira Arouca
    • 1
  • Fran Sérgio Lobato
    • 2
    Email author
  1. 1.NUCAPS - Laboratory of Separation Processes, School of Chemical EngineeringFederal University of UberlândiaUberlândiaBrazil
  2. 2.NUCOP - Laboratory of Modeling, Simulation, Control and Optimization, School of Chemical EngineeringFederal University of UberlândiaUberlândiaBrazil

Personalised recommendations