Uncertainty Quantification and Statistics of Curves and Surfaces

  • Mohamed Bassi
  • Emmanuel Pagnacco
  • Eduardo Souza de CursiEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 872)


The analysis of the uncertainty and robustness of infinite dimensional objects such as functions, curves and surfaces is an emerging problem, which is requested, for instance, in uncertain multiobjective optimization. Indeed, the determination of statistics—such as the mean or standard deviation—of infinite dimensional objects involves probabilities in infinite dimensional spaces, what introduces operational difficulties. We examine two existing approaches and furnish some comparisons. It is shown that both are effective to calculate and that a mixed approach can produce gains analogous to those of uncertainty quantification of finite-dimensional objects.


Uncertainties Multiobjective optimization Hybrid algorithms 


  1. 1.
    Chui, Q.S.H.: J. Braz. Chem. Soc. 18, 424 (2007)CrossRefGoogle Scholar
  2. 2.
    Arunthong, T., Thuenhan, S., Wongsripan, P., Chomkokard, S., Wongkokua, W., Jinuntuya, N.: J. Phys. Conf. Ser. 1144, 012153 (2018). CrossRefGoogle Scholar
  3. 3.
    Mukherjee, S., Reddy, M.P., Ganguli, R., Gopalakrishnan, S.: Int. J. Comput. Methods Eng. Sci. Mech. 19(3), 156 (2018).
  4. 4.
    Králik, J.: Transactions of the VSB: Technical University of Ostrava. Civ. Eng. Ser. 17 (2017).
  5. 5.
    Phan, B., Salay, R., Czarnecki, K., Abdelzad, V., Denouden, T., Vernekar, S.: Calibrating Uncertainties in Object Localization Task (2018). Google Scholar
  6. 6.
    Pfoser, D., Jensen, C.S.: Capturing the Uncertainty of Moving-Object Representations. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) Advances in Spatial Databases. SSD 1999. Lecture Notes in Computer Science, vol. 1651. Springer, Berlin, Heidelberg (1999)Google Scholar
  7. 7.
    Souza de Cursi, E.: In: Tarocco, E., de Souza Neto, E.A., Novotny, A.A. (eds.) Variational Formulations in Mechanics: Theory and Applications, pp. 87–106. International Center for Numerical Methods in Engineering (CIMNE) (2007)Google Scholar
  8. 8.
    Souza de Cursi, E., Sampaio, R.: Uncertainty Quantification and Stochastic Modeling with Matlab, 1st edn. Elsevier, Amsterdam (2015)Google Scholar
  9. 9.
    Zidani, H.: Representation de Solutions en Optimisation Continue, Multiobjectif et Applications. Ph.D. Thesis. INSA, Rouen (2013)Google Scholar
  10. 10.
    Zidani, H., Souza de Cursi, E., Ellaia, R.: J. Glob. Optim. 65(2), 261 (2016).
  11. 11.
    Bassi, M., Souza de Cursi, E., Pagnacco, E., Ellaia, R.: Lat. Am. J. Solids Struct. 15(11), 1015 (2018).
  12. 12.
    Bassi, M., Souza de Cursi, E., Ellaia, R.: In: 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling (2016).
  13. 13.
    Bassi, M.: Quantification d’incertitudes et Objets en Dimension Infinie. Ph.D. Thesis, INSA Rouen Normandie, Normandie University, Normandie (2019)Google Scholar
  14. 14.
    Croquet, R., Souza de Cursi, E.: In: Topping, B., Adam, J., Pallares, F., Bru, R., Romero, M. (eds.) Proceedings of the Tenth International Conference on Computational Structures Technology, pp. 541–561. Civil-Comp Press, Stirlingshire (2010)Google Scholar
  15. 15.
    Souza de Cursi, E.: Variational Methods for Engineers with Matlab, 1st edn. Wiley, London (2015). e-ISBN: 9781119230120
  16. 16.
    Fonseca, C.M., Fleming, P.J.: Evol. Comput. 3(1), 1 (1995). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohamed Bassi
    • 1
  • Emmanuel Pagnacco
    • 1
  • Eduardo Souza de Cursi
    • 1
    Email author
  1. 1.LMN, INSA Rouen NormandieNormandie UniversitéSaint-Étienne-du-RouvrayFrance

Personalised recommendations