Advertisement

Fault Detection and Isolation in Smart Grid Devices Using Probabilistic Boolean Networks

  • Pedro J. Rivera-TorresEmail author
  • Orestes Llanes Santiago
Chapter
  • 15 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 872)

Abstract

The area of smart power systems needs continuous improvement of its efficiency and reliability, to produce power with optimal quality in a resilient, fault-tolerant grid. Components must be highly reliable, properly maintained, and the occurrence of faults and failures has to be studied. Guaranteeing correct system operation to performance specifications involving the aforementioned activities is an active research area that applies novel methodology to the detection, classification, and isolation of faults and failures, modeling and simulating processes using predictive algorithms, with innovative AI techniques. To maintain complex power grids, predictive analytics is necessary, as employing it to plan and perform activities lowers maintenance costs and minimizes downtime. Detecting multiple faults in dynamic systems is a difficult task. Biomimetic methodologies have been applied widely in engineering systems to solve many complex problems of this field. This contribution presents a complex-adaptive bioinformatic, self-organizing framework, probabilistic Boolean networks (PBN), as a means to understand the rules that govern dynamic power systems, and to model and analyze their behavior. They are used to describe Gene Regulatory Networks, but have been recently expanding to other fields. PBNs can model system behavior, and with model checking and formal logic, assure the process’ mathematical correct-ness. They enable designers, reliability and electrical engineers, and other experts to make intelligent decisions, since PBNs self-organize into attractors that model the system’s operating modes, permit design for reliability, create intelligent fault diagnosis systems, assist the reliability engineering design process, and use data to analyze a system’s behavior, achieving predictive maintenance.

Keywords

Smart power systems Fault detection and isolation Probabilistic Boolean networks Reliability Failure modes 

Notes

Acknowledgements

The authors would like to acknowledge the support of University of Puerto Rico-Río Piedras, and Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE.

References

  1. 1.
    Acosta Diaz, C., Camps Echevarria, L., Prieto Moreno, A., Silva Neto, A.J., Llanes-Santiago, O.: A model-based fault diagnosis in a nonlinear bioreactor using an inverse problem approach. Chem. Eng. Res. Des. 114, 18–29 (2016)CrossRefGoogle Scholar
  2. 2.
    Arnosti, D.N., Ay, A.: Boolean modeling of gene regulatory networks: Driesch redux. Proc. Natl. Acad. Sci. 109(45), 18239–18240 (2012).  https://doi.org/10.1073/pnas.1215732109 CrossRefGoogle Scholar
  3. 3.
    Bachschmid, N., Pennacchi, P., Vania, A.: Identification of multiple faults in rotor systems. J. Sound Vib. 254, 327–366 (2002)CrossRefGoogle Scholar
  4. 4.
    Bane, V., Ravanmehr, V., Krishnan, A.R.: An information theoretic approach to constructing robust Boolean gene regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(1), 52–65 (2012)CrossRefGoogle Scholar
  5. 5.
    Bartenstein, T., Heaberlin, D., Huisman, D., Sliwinski, D.: Diagnosing combinational logic de-signs using the single location at-a-time (slat) paradigm. In: Proceedings of IEEE International Test Conference (ITC), pp. 287–296. IEEE, Piscataway (2001).  https://doi.org/10.1109/TEST.2001.966644
  6. 6.
    Camps Echevarría, L., Silva Neto, A.J., Llanes-Santiago, O., Hernández Fajardo, J.A., Jiménez Sánchez, D.: A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation. Eng. Appl. Artif. Intell. 28, 36–51 (2014)CrossRefGoogle Scholar
  7. 7.
    Camps Echevarría, L., Campos Velho, H.F., Becceneri, J.C., Silva Neto, A.J., Llanes-Santiago, O.: The fault diagnosis inverse problem with ant colony optimization and ant colony optimization with dispersion. Appl. Math. Comput. 227(15), 687–700 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Camps Echevarría, L., Llanes-Santiago, O., Fraga de Campos Velho, H., Silva Neto, A.J.: Fault Diagnosis Inverse Problems: Solution with Metaheuristics. Springer, New York (2019). https://doi.org/10.1007/978-3-319-89978-7
  9. 9.
    Chaouiya, C., Ourrad, O., Lima, R.: Majority rules with random tie-breaking in Boolean gene regulatory networks. PLOS One 8(7), e69626 (2013).  https://doi.org/10.1371/journal.pone.0069626 CrossRefGoogle Scholar
  10. 10.
    Chen, H., Sun, J.: Stability and stabilisation of context-sensitive probabilistic Boolean networks. IET Control Theory Appl. 8(17), 2115–2121 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, X., Jiang, H., Ching, W.: On construction of sparse probabilistic Boolean networks. East Asian J. Appl. Math. 2(1), 1–18 (2012).  https://doi.org/10.4208/eajam.030511.060911a MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ching, W., Chen, X., Tsing, N.: Generating probabilistic Boolean networks from a prescribed transition probability matrix. IET Syst. Biol. 3, 453–464 (2009)CrossRefGoogle Scholar
  13. 13.
    Ching, W., Zhang, S., Jiao, Y., Akutsu, T., Tsing, N., Wong, A.: Optimal control policy for probabilistic Boolean networks with hard constraints. IET Syst. Biol. 3(2), 90–99 (2009)CrossRefGoogle Scholar
  14. 14.
    Didier, G., Remy, E.: Relations between gene regulatory networks and cell dynamics in Boolean models. Discret. Appl. Math. 160(15), 2147–2157 (2012).  https://doi.org/10.1002/asjc.1722 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ebeling, C.E.: An Introduction to Reliability and Maintainability Engineering. McGraw-Hill, New York (1997)Google Scholar
  16. 16.
    Frank, P.M.: Analytical and qualitative model-based fault diagnosis - a survey and some new results. Eur. J. Control 2(1), 6–28 (1996)CrossRefGoogle Scholar
  17. 17.
    Gao, Y., Xu, P., Wang, X., Liu, W.: The complex fluctuations of probabilistic Boolean networks. BioSystems 114, 78–84 (2013). https://doi.org/10.1016/j.biosystems.2013.07.008 CrossRefGoogle Scholar
  18. 18.
    Heising, C., Janssen, A.L.J., Lanz, W., Colombo, E., Dialynas, E.N.: Summary of CIGRE 13.06 working group world wide reliability data and maintenance cost data on high voltage circuit breakers above 63kv. In: Industry Applications Society Annual Meeting, vol. 3, pp. 2226–2234 (1994)Google Scholar
  19. 19.
    Irizarry-Rivera, A.A., Rodríguez-Martínez, M., Vélez, B., Vélez-Reyes, M., Ramirez-Orquin, A.R., O’neill-Carrillo, E., Cedeño, J.R.: Operation and Control of Electric Energy Processing Systems, chap. Intelligent Power Routers: Distributed Coordination for Electric Energy Processing Networks, pp. 47–85. Springer, Berlin (2010). https://doi.org/10.1002/9780470602782.ch3
  20. 20.
    Isermann, R.: Process fault detection based on modelling and estimation methods - a survey. Automatica 20(4), 387–404 (1984). https://doi.org/10.1016/0005-1098(84)90098-0
  21. 21.
    Isermann, R.: Model based fault detection and diagnosis. Status and applications. Ann. Rev. Control 29(1), 71–85 (2005)CrossRefGoogle Scholar
  22. 22.
    Isermann, R.: Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems, vol. 24. Springer, Berlin (2011).  https://doi.org/10.1002/rnc.3142 zbMATHGoogle Scholar
  23. 23.
    Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969). https://doi.org/10.1038/224177a0 CrossRefGoogle Scholar
  24. 24.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969). https://doi.org/10.1016/0022-5193(69)90015-0
  25. 25.
    Kobayashi, K., Hiraishi, K.: Reachability analysis of probabilistic Boolean networks using model checking. In: Proceedings of SICE Annual Conference 2010, vol. 2014, pp. 1–8 (2010). https://doi.org/10.1155/2014/968341
  26. 26.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: verification of probabilistic real-time systems. In: G. Gopalakrishnan, S. Qadeer (eds.) Computer Aided Verification. Lecture Notes in Computer Science, vol. 6806, pp. 585–591. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  27. 27.
    Liu, Q., Zeng, Q., Huang, J., Li, D.: Optimal intervention in semi-Markov-based asynchronous probabilistic Boolean networks. Complexity 2018(ID 8983670) (2018). https://doi.org/10.1155/2018/8983670
  28. 28.
    Mendonça, L., Sousa, J., Sá da Costa, J.: An architecture for fault detection and isolation based on fuzzy methods. Expert Syst. Appl. 36, 1092–1104 (2009). https://doi.org/10.1016/j.eswa.2007.11.009
  29. 29.
    Rivera Torres, P., Serrano Mercado, E.: Probabilistic Boolean network modeling as an aid for DFMEA in manufacturing systems. In: Proceedings of XVIII Scientific Convention in Engineering and Architecture (CCIA 2016). La Habana, Cuba (2016)Google Scholar
  30. 30.
    Rivera Torres, P., Serrano Mercado, E., Llanes-Santiago, O., Anido Rifón, L.: Modeling preventive maintenance of manufacturing processes with probabilistic Boolean networks with interventions. J. Intell. Manuf. 29(8), 1941–1952 (2018). https://doi.org/10.1007/s10845-017-1321-7 CrossRefGoogle Scholar
  31. 31.
    Rivera Torres, P.J., Serrano Mercado, E., Anido, R.L.: Probabilistic Boolean network modeling of an industrial machine. J. Intell. Manuf. 29(4), 875–890 (2018). https://doi.org/10.1007/s10845-015-1143-4 CrossRefGoogle Scholar
  32. 32.
    Rivera Torres, P.J., Serrano Mercado, E., Anido Rifón, L.: Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems. J. Intell. Manuf. 29(6), 1393–1413 (2018). https://doi.org/10.1007/s10845-015-1183-9 CrossRefGoogle Scholar
  33. 33.
    Rodríguez Ramos, A., Domínguez Acosta, C., Rivera Torres, P.J., Serrano Mercado, E.I., Beauchamp Báez, G., Anido Rifón, L., Llanes-Santiago, O.: An approach to multiple fault diagnosis using fuzzy logic. J. Int. Manag. (2016). https://doi.org/10.1007/s10845-016- 1256-4
  34. 34.
    Ruan, S., Zhou, Y., Feili, Y., Pattipati, K., Willett, P., Patterson-Hine, A.: Dynamic multiple-fault diagnosis with imperfect tests. IEEE Trans. Syst. Man Cybern. A: Syst. Humans 39, 1224–1236 (2009).  https://doi.org/10.1109/tsmca.2009.2025572 CrossRefGoogle Scholar
  35. 35.
    Shmulevich, I., Dougherty, E., Kim, S.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002).  https://doi.org/10.1093/bioinformatics/18.2.261 CrossRefGoogle Scholar
  36. 36.
    Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: Modeling and Control of Gene Regulatory Networks. SIAM, Philadelphia (2010). https://doi.org/10.1137/1.9780898717631 CrossRefGoogle Scholar
  37. 37.
    Simani, S., Farsoni, S., Castaldi, P.: Wind turbine simulator fault diagnosis via fuzzy modelling and identification techniques. Sustainable Energy, Grids Netw. 1, 45–52 (2015). https://doi.org/10.1016/j.segan.2014.12.001
  38. 38.
    Sobhani-Tehrani, E., Talebi, H., Khorasani, K.: Hybrid fault diagnosis of nonlinear systems using neural parameter estimators. Neural 50, 12–32 (2014). https://doi.org/10.1016/j.neunet.2013.10.005 zbMATHGoogle Scholar
  39. 39.
    Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.: Recent development and biomedical applications of probabilistic Boolean networks. Cell Commun. Signal 11, 46 (2013). https://doi.org/10.1186/1478-811x-11-46 CrossRefGoogle Scholar
  40. 40.
    Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003). https://doi.org/10.1016/s0098-1354(02)00161-8
  41. 41.
    Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part II: qualitative model-based methods and search strategies. Comput. Chem. Eng. 27(3), 313–326 (2003). https://doi.org/10.1016/s0098-1354(02)00161-8 CrossRefGoogle Scholar
  42. 42.
    Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003). https://doi.org/10.1016/s0098-1354(02)00161-8 CrossRefGoogle Scholar
  43. 43.
    Vong, C., Wong, P., Wong, K.: Simultaneous-fault detection based on qualitative symptom descriptions for automotive engine diagnosis. Appl. Soft Comput. 22, 238–248 (2014). https://doi.org/10.1016/j.asoc.2014.05.014 CrossRefGoogle Scholar
  44. 44.
    Wang, Z., Marek’Sadowska, M., Tsai, K., Rajski, J.: Analysis and methodology for multiple fault diagnosis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25, 558–575 (2006)CrossRefGoogle Scholar
  45. 45.
    Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems From Analytical to Soft Computing Approaches, vol. 354. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71116-2 zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science-School of Natural SciencesUniversity of Puerto Rico at Río PiedrasSan JuanUSA
  2. 2.Department of Automation and ComputingUniversidad Tecnológica de La Habana José Antonio EcheverríaCUJAECuba

Personalised recommendations