Advertisement

Uncertainty Analysis of a Near-Field Acoustic Levitation System

  • Fran Sérgio LobatoEmail author
  • Geisa Arruda Zuffi
  • Aldemir Ap. CavaliniJr.
  • Valder SteffenJr.
Chapter
  • 25 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 872)

Abstract

Near-field acoustic levitation is a physical phenomenon that occurs when a planar object is placed in the proximity of a vibrating surface. Consequently, a thin layer of ambient gas, commonly referred to as squeeze film, is trapped in the clearance between a vibrating surface and an adjacent planar object performing its levitation. Mathematically, this phenomenon is described by using the Reynolds equation, which is derived from the Navier–Stokes momentum and continuity equations. The equation of motion that represents the dynamic behavior of the levitated object is also considered. However, the performance of the near-field acoustic levitation can be significantly affected by uncertainties on its geometrical parameters and operating conditions. Thus, the present contribution aims to evaluate the influence of uncertain parameters on the resulting levitation force. For this purpose, the differential evolution algorithm is associated with two strategies (inverse reliability analysis and effective mean concept). This multi-objective optimization problem considers the maximization of the levitation force associated with the maximization of both the reliability and robustness coefficients. Numerical simulations demonstrated the sensitivity of each uncertain parameter associated to the obtained levitation forces. As expected, it was verified that the levitation force decreases as the considered reliability and robustness coefficients increases.

Keywords

Uncertainties Sensitivity Near-field acoustic levitation Multi-objective optimization Differential evolution 

Notes

Acknowledgements

The authors are thankful for the financial support provided to the present research effort by CNPq (574001/2008-5, 304546/2018-8, and 431337/2018-7), FAPEMIG (TEC-APQ-3076-09, TEC-APQ-02284-15, TEC-APQ-00464-16, and PPM-00187-18), and CAPES through the INCT-EIE.

References

  1. 1.
    Choi, S.K., Grandhi, R., Canfield, R.A.: Reliability-Based Structural Design. Springer, London (2006)zbMATHGoogle Scholar
  2. 2.
    Carter, D.S.: Mechanical Reliability and Design. Wiley, New York (1997)CrossRefGoogle Scholar
  3. 3.
    Melchers, R.E.: Structural Reliability Analysis and Prediction. Wiley, Chichester (1999)Google Scholar
  4. 4.
    Deb, K., Gupta, H.: Introducing robustness in multi-objective optimization. Evol. Comput. 14(4), 463–494 (2006)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Padmanabhan, D., Gupta, S., Mall, A.K.: Handling uncertainties through reliability-based optimization using evolutionary algorithms. IEEE Trans. Evol. Comput. 13(5), 1054–1074 (2009)CrossRefGoogle Scholar
  6. 6.
    Wang, P., Wang, Z., Almaktoom, A.T.: Dynamic reliability-based robust design optimization with time-variant probabilistic constraints. Eng. Optim. 246(6), 784–809 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gu, X., Sun, G., Li, G., Mao, L., Li, Q.: A comparative study on multi-objective reliable and robust optimization for crashworthiness design of vehicle structure. Struct. Multidiscip. Optim. 48(3), 669–684 (2013)CrossRefGoogle Scholar
  8. 8.
    Prigent, S., Maréchal, P., Rondepierre, A., Druot. T., Belleville, B.: A robust optimization methodology for preliminary aircraft design. Eng. Optim. 48(5), 883–899 (2015)Google Scholar
  9. 9.
    Doh, J., Kim, Y., Lee, J.: Reliability-based robust design optimization of gap size of annular nuclear fuels using kriging and inverse distance weighting methods. Eng. Optim. 1(1), 1–16 (2018)MathSciNetGoogle Scholar
  10. 10.
    Du, X., Chen. W. Sequential optimization and reliability assessment method for efficient probabilistic design. J. Mech. Des. 126(2), 225–233 (2004)Google Scholar
  11. 11.
    Poles, S., Lovison, A.: A polynomial chaos approach to robust multiobjective optimization, hybrid and robust Approaches to multiobjective optimization. In: Deb, K., Greco, S., Miettinen, K., Zitzler, E. (eds.) Proceedings of Dagstuhl Seminar, pp. 1–15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl. (2009)Google Scholar
  12. 12.
    Du, X., Sudjianto, A., Chen, W.: An integrated framework for optimization under uncertainty using inverse reliability strategy. J. Mech. Des. 126(4), 562–570 (2004)CrossRefGoogle Scholar
  13. 13.
    Vandaele, V., Lambert, P., Delchambre, A.: Non-contact handling in microassembly: acoustical levitation. Precis. Eng. 29(4), 491–505 (2005)CrossRefGoogle Scholar
  14. 14.
    Yamazaki, T., Hu, J., Nakamura, K., Ueha, S.: Trial construction of a noncontact ultrasonic motor with an ultrasonically levitated rotor. Jpn. J. Appl. Phys. 35(5S), 3286 (1996)CrossRefGoogle Scholar
  15. 15.
    Peng, T., Yang, Z., Kan, J., Tian, F., Che, X.: Performance investigation on ultrasonic levitation axial bearing for flywheel storage system. Front. Mech. Eng. China 4(4), 415 (2009)CrossRefGoogle Scholar
  16. 16.
    Stolarski, T.A., Xue, Y., Yoshimoto, S.: Air journal bearing utilizing near-field acoustic levitation stationary shaft case. Proc. Inst. Mech. Eng. J J. Eng. Tribol. 225(3), 120–127 (2011)CrossRefGoogle Scholar
  17. 17.
    Thomas, G.P., Andrade, M.A., Adamowski, J.C., Silva, E.C.N.: Development of an acoustic levitation linear transportation system based on a ring-type structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(5), 839–846 (2017)CrossRefGoogle Scholar
  18. 18.
    Ilssar, D., Bucher, I.: On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies. J. Sound Vib. 354, 154–166 (2015)CrossRefGoogle Scholar
  19. 19.
    Hrka, S.: Acoustic Levitation. University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana (2015)Google Scholar
  20. 20.
    Ilssar, D., Bucher, I.: The effect of acoustically levitated objects on the dynamics of ultrasonic actuators. J. Appl. Phys. 121(11), 114504 (2017)CrossRefGoogle Scholar
  21. 21.
    Lobato, F.S., Steffen Jr., V.: A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy. J. Artif. Intell. Soft Comput. Res. 1, 1–12 (2011)Google Scholar
  22. 22.
    Zhao, S.: Investigation of Non-contact Bearing Systems Based on Ultrasonic Levitation. PZH, Produktionstechn (2010)Google Scholar
  23. 23.
    Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhao, Y.G., Ono, T.: A general procedure for first/second-order reliability method (FORM/SORM). Struct. Saf. 21(1), 95–112 (1999)CrossRefGoogle Scholar
  25. 25.
    Storn, R., Price, K.V.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Int. Comput. Sci. Inst. 12, 1–16 (1995)Google Scholar
  26. 26.
    Deb. K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)Google Scholar
  27. 27.
    Hu, X., Coello, C.A.C., Huang, Z.: A new multi-objective evolutionary algorithm: neighborhood exploring evolution strategy. Eng. Optim. 37(4), 351–379 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Villadsen, J.V., Michelsen, M.L.: Solution of differential equation models by polynomial approximation. Prentice-Hall, New Jersey (1978)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fran Sérgio Lobato
    • 1
    Email author
  • Geisa Arruda Zuffi
    • 2
  • Aldemir Ap. CavaliniJr.
    • 2
  • Valder SteffenJr.
    • 2
  1. 1.NUCOP, Laboratory of Modeling, Simulation, Control and Optimization of Processes, School of Chemical EngineeringFederal University of UberlândiaUberlândiaBrazil
  2. 2.LMEst, Laboratory of Mechanics and Structures, School of Mechanical EngineeringFederal University of UberlândiaUberlândiaBrazil

Personalised recommendations