Vertex-Connectivity for Node Failure Identification in Boolean Network Tomography

  • Nicola Galesi
  • Fariba Ranjbar
  • Michele ZitoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11931)


In this paper we study the node failure identification problem in undirected graphs by means of Boolean Network Tomography. We argue that vertex connectivity plays a central role. We show tight bounds on the maximal identifiability in a particular class of graphs, the Line of Sight networks. We prove slightly weaker bounds on arbitrary networks. Finally we initiate the study of maximal identifiability in random networks. We focus on two models: the classical Erdős-Rényi model, and that of Random Regular graphs. The framework proposed in the paper allows a probabilistic analysis of the identifiability in random networks giving a tradeoff between the number of monitors to place and the maximal identifiability.


  1. 1.
    Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartolini, N., He, T., Khamfroush, H.: Fundamental limits of failure identifiability by Boolean network tomography. In: INFOCOM 2017. IEEE (2017)Google Scholar
  3. 3.
    Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7, 327–341 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  6. 6.
    Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent developments. Stat. Sci. 19(3), 499–517 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph-constrained group testing. IEEE Trans. Inf. Theory 58(1), 248–262 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Coates, M., Hero, A.O., Nowak, R., Yu, B.: Internet tomography. IEEE Signal Process. Mag. 19, 47–65 (2002)CrossRefGoogle Scholar
  9. 9.
    Czumaj, A., Wang, X.: Communication problems in random line-of-sight ad-hoc radio networks. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 70–81. Springer, Heidelberg (2007). Scholar
  10. 10.
    Devroye, L., Farczadi, L.: Connectivity for line-of-sight networks in higher dimensions. Discrete Math. Theor. Comput. Sci. 15(2), 71–86 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Du, D.-M., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientific, Singapore (2000)zbMATHGoogle Scholar
  12. 12.
    Duffield, N.G.: Simple network performance tomography. In: Proceedings of the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, FL, USA, 27–29 October 2003, pp. 210–215. ACM (2003)Google Scholar
  13. 13.
    Frieze, A.M., Kleinberg, J.M., Ravi, R., Debany, W.: Line-of-sight networks. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, 7–9 January 2007, pp. 968–977. SIAM (2007)Google Scholar
  14. 14.
    Ghita, D., Karakus, C., Argyraki, K., Thiran, P.: Shifting network tomography toward a practical goal. In: Proceedings of the Seventh COnference on Emerging Networking EXperiments and Technologies, CoNEXT 2011, pp. 24:1–24:12. ACM, New York (2011)Google Scholar
  15. 15.
    Galesi, N., Ranjbar, F.: Tight bounds for maximal identifiability of failure nodes in boolean network tomography. In: 2018 IEEE 38th International Conference on Distributed Computing Systems, pp. 212–222. IEEE (2018)Google Scholar
  16. 16.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)CrossRefGoogle Scholar
  17. 17.
    Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Inferring link metrics from end-to-end path measurements: identifiability and monitor placement. IEEE/ACM Trans. Netw. 22(4), 1351–1368 (2014)CrossRefGoogle Scholar
  18. 18.
    Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K., Lowe, J.: Node failure localization via network tomography. In: Williamson, C., Akella, A., Taft, N. (eds.) Proceedings of the 2014 Internet Measurement Conference, IMC 2014, Vancouver, BC, Canada, 5–7 November 2014, pp. 195–208. ACM (2014)Google Scholar
  19. 19.
    Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K.: Network capability in localizing node failures via end-to-end path measurements. IEEE/ACM Trans. Netw. 25(1), 434–450 (2017)CrossRefGoogle Scholar
  20. 20.
    Ren, W., Dong, W.: Robust network tomography: K-identifiability and monitor assignment. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 1–9. IEEE (2016)Google Scholar
  21. 21.
    Sangha, P., Wong, P.W.H., Zito, M.: Independent sets in restricted line of sight networks. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 211–222. Springer, Cham (2017). Scholar
  22. 22.
    Sangha, P., Zito, M.: Finding large independent sets in line of sight networks. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 332–343. Springer, Cham (2017). Scholar
  23. 23.
    Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91(433), 365–377 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universitá La SapienzaRomeItaly
  2. 2.University of LiverpoolLiverpoolUK

Personalised recommendations