Characteristics and Evolution of Citation Distance Based on LDA Method
Abstract
The scientific research behavior of scholars is the core issue of scientific research. The research ideas and methods of complex networks provide a new perspective for the study of science. The scientific citation network and the scientist cooperation network are widely used to study the citation behavior of scholars and the dissemination of scientific ideas, and so far, some results have been obtained. However, due to the lack of information on the content of the article, the research based solely on the network topology has limitations and deficiencies. Combining the textual content analysis through LDA, this paper studies the distribution characteristics of content correlation between articles with citation relations and its evolution with time. It found that the distribution of citation distance has normal characteristics, but the reference distance is visible to be short. Authors have citation preferences for documents at a distance.
Keywords
Scientific reference Citation distance Scientist’s behavior LDANotes
Acknowledgments
We appreciate comments and helpful suggestions from Prof. Zengru Di, Prof. Chensheng Wu, Ms. Weiwei Gu. This work was supported by Chinese National Natural Science Foundation (71701018, 61673070 and 71671017).
References
- 1.Jia, T., Wang, D., Szymanski, B.K.: Quantifying patterns of research-interest evolution. Nature Human Behaviour 1(4), 0078 (2017)CrossRefGoogle Scholar
- 2.Leydesdorff, L.: The Challenge of Scientometrics: the Development, Measurement, and Self-Organization of Scientific Communications. Universal-Publishers (2001)Google Scholar
- 3.Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., Stanley, H.E.: The science of science: from the perspective of complex systems. Phys. Rep. 714, 1–73 (2017)MathSciNetCrossRefGoogle Scholar
- 4.Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001)MathSciNetCrossRefGoogle Scholar
- 5.Shibata, N., Kajikawa, Y., Takeda, Y., Matsushima, K.: Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 28(11), 758–775 (2008)CrossRefGoogle Scholar
- 6.Radicchi, F., Fortunato, S., Markines, B., Vespignani, A.: Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80(5), 056103 (2009)CrossRefGoogle Scholar
- 7.Li, Y., Li, H., Liu, N., Liu, X.: Important institutions of interinstitutional scientific collaboration networks in materials science. Scientometrics 117(1), 85–103 (2018)CrossRefGoogle Scholar
- 8.Zhou, Y.B., Lü, L., Li, M.: Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New J. Phys. 14(3), 033033 (2012)CrossRefGoogle Scholar
- 9.An, W., Ding, Y.: The landscape of causal inference: perspective from citation network analysis. Am. Stat. 72(3), 265–277 (2018)MathSciNetCrossRefGoogle Scholar
- 10.Gualdi, S., Medo, M., Zhang, Y.C.: Influence, originality and similarity in directed acyclic graphs. Europhys. Lett. 96(1), 18004 (2011)CrossRefGoogle Scholar
- 11.Shen, H.W., Barabási, A.L.: Collective credit allocation in science. Proc. Natl. Acad. Sci. 111(34), 12325–12330 (2014)CrossRefGoogle Scholar
- 12.Niu, Q., Zhou, J., Zeng, A., Fan, Y., Di, Z.R.: Which publication is your representative work? J. Inf. 10(3), 842–853 (2016)Google Scholar
- 13.Son, J., Kim, S.B.: Academic paper recommender system using multilevel simultaneous citation networks. Decis. Support Syst. 105, 24–33 (2018)CrossRefGoogle Scholar
- 14.Acuna, D.E., Allesina, S., Kording, K.P.: Future impact: predicting scientific success. Nature 489(7415), 201 (2012)CrossRefGoogle Scholar
- 15.Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002)MathSciNetCrossRefGoogle Scholar
- 16.Saggion, H., Poibeau, T.: Automatic text summarization: past, present and future. In: Multi-source, Multilingual Information Extraction and Summarization, pp. 3–21. Springer Berlin Heidelberg (2013)Google Scholar
- 17.Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Automatic keyphrase extraction from scientific articles. Lang. Resour. Eval. 47(3), 723–742 (2013)CrossRefGoogle Scholar
- 18.Blei, D.M., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2013)zbMATHGoogle Scholar
- 19.Hantzsche, A., Kara, A., Young, G., Bates, J.M., Granger, C.W., Geweke, J., Amisano, G., Rossi, B., Elliott, G., Timmermann, A.: Latent Dirichlet allocation. Natl. Inst. Econ. Rev. 246(1), F4–F35 (2018)CrossRefGoogle Scholar