Advertisement

Characteristics and Evolution of Citation Distance Based on LDA Method

  • Benji Li
  • Yan Wang
  • Xiaomeng Li
  • Qinghua ChenEmail author
  • Jianzhang Bao
  • Tao Zheng
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1084)

Abstract

The scientific research behavior of scholars is the core issue of scientific research. The research ideas and methods of complex networks provide a new perspective for the study of science. The scientific citation network and the scientist cooperation network are widely used to study the citation behavior of scholars and the dissemination of scientific ideas, and so far, some results have been obtained. However, due to the lack of information on the content of the article, the research based solely on the network topology has limitations and deficiencies. Combining the textual content analysis through LDA, this paper studies the distribution characteristics of content correlation between articles with citation relations and its evolution with time. It found that the distribution of citation distance has normal characteristics, but the reference distance is visible to be short. Authors have citation preferences for documents at a distance.

Keywords

Scientific reference Citation distance Scientist’s behavior LDA 

Notes

Acknowledgments

We appreciate comments and helpful suggestions from Prof. Zengru Di, Prof. Chensheng Wu, Ms. Weiwei Gu. This work was supported by Chinese National Natural Science Foundation (71701018, 61673070 and 71671017).

References

  1. 1.
    Jia, T., Wang, D., Szymanski, B.K.: Quantifying patterns of research-interest evolution. Nature Human Behaviour 1(4), 0078 (2017)CrossRefGoogle Scholar
  2. 2.
    Leydesdorff, L.: The Challenge of Scientometrics: the Development, Measurement, and Self-Organization of Scientific Communications. Universal-Publishers (2001)Google Scholar
  3. 3.
    Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., Stanley, H.E.: The science of science: from the perspective of complex systems. Phys. Rep. 714, 1–73 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shibata, N., Kajikawa, Y., Takeda, Y., Matsushima, K.: Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 28(11), 758–775 (2008)CrossRefGoogle Scholar
  6. 6.
    Radicchi, F., Fortunato, S., Markines, B., Vespignani, A.: Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80(5), 056103 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, Y., Li, H., Liu, N., Liu, X.: Important institutions of interinstitutional scientific collaboration networks in materials science. Scientometrics 117(1), 85–103 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhou, Y.B., Lü, L., Li, M.: Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New J. Phys. 14(3), 033033 (2012)CrossRefGoogle Scholar
  9. 9.
    An, W., Ding, Y.: The landscape of causal inference: perspective from citation network analysis. Am. Stat. 72(3), 265–277 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gualdi, S., Medo, M., Zhang, Y.C.: Influence, originality and similarity in directed acyclic graphs. Europhys. Lett. 96(1), 18004 (2011)CrossRefGoogle Scholar
  11. 11.
    Shen, H.W., Barabási, A.L.: Collective credit allocation in science. Proc. Natl. Acad. Sci. 111(34), 12325–12330 (2014)CrossRefGoogle Scholar
  12. 12.
    Niu, Q., Zhou, J., Zeng, A., Fan, Y., Di, Z.R.: Which publication is your representative work? J. Inf. 10(3), 842–853 (2016)Google Scholar
  13. 13.
    Son, J., Kim, S.B.: Academic paper recommender system using multilevel simultaneous citation networks. Decis. Support Syst. 105, 24–33 (2018)CrossRefGoogle Scholar
  14. 14.
    Acuna, D.E., Allesina, S., Kording, K.P.: Future impact: predicting scientific success. Nature 489(7415), 201 (2012)CrossRefGoogle Scholar
  15. 15.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Saggion, H., Poibeau, T.: Automatic text summarization: past, present and future. In: Multi-source, Multilingual Information Extraction and Summarization, pp. 3–21. Springer Berlin Heidelberg (2013)Google Scholar
  17. 17.
    Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Automatic keyphrase extraction from scientific articles. Lang. Resour. Eval. 47(3), 723–742 (2013)CrossRefGoogle Scholar
  18. 18.
    Blei, D.M., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2013)zbMATHGoogle Scholar
  19. 19.
    Hantzsche, A., Kara, A., Young, G., Bates, J.M., Granger, C.W., Geweke, J., Amisano, G., Rossi, B., Elliott, G., Timmermann, A.: Latent Dirichlet allocation. Natl. Inst. Econ. Rev. 246(1), F4–F35 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Benji Li
    • 1
  • Yan Wang
    • 2
  • Xiaomeng Li
    • 1
  • Qinghua Chen
    • 1
    Email author
  • Jianzhang Bao
    • 1
  • Tao Zheng
    • 1
  1. 1.School of Systems ScienceBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations