Advertisement

Security Issues for Smart Grid EC System

  • Aidong Xu
  • Yunan Zhang
  • Yixin Jiang
  • Jie Chen
  • Yushan Li
  • Lian Dong
  • Yujun Yi
  • Fei Pan
  • Hong WenEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1084)

Abstract

As a typical industry auto control system, security issue is a necessary task in order to guarantee safe and secure grid operation. The edge devices the local data processing and storage that provide a real time control, a low latency and also can play a role of the security gate, in which the terminal authentication, data privacy and data security can be provide. Due to the terminals of the SG are resource and computing constrained devices, the encryption security measurements are hard to perform on these devices. Physical-layer (PHY) security methods use the characteristics of the channel or the device fingerprints, which can run on the edge devices. Therefore, the terminals almost do nothing, which means these kinds of PHY security methods are light weight to the terminals. This paper introduced several PHY light weight authentication methods for the smart grid based on the edge computing and illustration their efficiency.

Keywords

Security Smart grid Edge computing Authentication Terminals 

Notes

Acknowledgments

This work was supported by National major R&D program (2018YFB0904900 and 2018YFB0904905).

References

  1. 1.
    Li, F., Qiao, W., Sun, H., et al.: Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)CrossRefGoogle Scholar
  2. 2.
    Tuptuk, N., Hailes, S.: The cyberattack on Ukraine’s power grid is a warning of what’s to come. https://phys.org/news/2016-01-cyberattack-ukraine-power-grid.html. Last accessed 13 Jan 2016
  3. 3.
    Kushner, D.: How Kaspersky Lab tracked down the malware that stymied Iran’s nuclear-fuel enrichment program. https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet, Oza N C. Online Ensemble Learning. The AAAI Conference on Artificial Intelligence, 2000. Last accessed 26 Feb 2013
  4. 4.
    Pan, F., Pang, Z.B., Luvisotto, M., et al.: Physical-layer security for industrial wireless control systems: basics and future directions. IEEE Ind. Electron. Mag. 12(4), 18–27 (2018)CrossRefGoogle Scholar
  5. 5.
    Xie, Y.P., Wen, H., Wu, B., Jiang, Y.X., Meng, J.X.: A modified hierarchical attribute-based encryption access control method for mobile cloud computing. IEEE Trans. Cloud Comput. 7(2), 383–391 (2019)CrossRefGoogle Scholar
  6. 6.
    Wen, H., Li, S., Zhu, X., Zhou, L.: A framework of the PHY-layer approach to defense against security threats in cognitive radio networks. IEEE Netw. 27(3), 34–39 (2013)CrossRefGoogle Scholar
  7. 7.
    Hu, L., Wen, H., Wu, B., Pan, F., Liao, R.F., Song, H.H., Tang, J., Wang, X.: Cooperative jamming for physical layer security enhancement in Internet of Things. IEEE Internet Things J. 5(1), 219–228 (2018)CrossRefGoogle Scholar
  8. 8.
    Song, H.H., Wen, H., Hu, L., Chen, Y., Liao, R.F.: Optimal power allocation for secrecy rate maximization in broadcast wiretap channels. IEEE Wireless Commun. Lett. 7(4), 514–517 (2018)CrossRefGoogle Scholar
  9. 9.
    Tang, J., Monireh, D., Zeng, K., Wen, H.: Impact of mobility on physical layer security over wireless fading channels. IEEE Trans. Wireless Commun. 17(12), 7849–7864 (2018)CrossRefGoogle Scholar
  10. 10.
    Hu, L., Wen, H., Wu, B., Tang, J., Pan, F.: Adaptive secure transmission for physical layer security in cooperative wireless networks. IEEE Commun. Lett. 21(3), 524–527 (2017)CrossRefGoogle Scholar
  11. 11.
    Wen, H., Ho, P.H., Wu, B.: Achieving secure communications over wiretap channels via security codes from resilient functions. IEEE Wireless Commun. Lett. 3(3), 273–276 (2014)CrossRefGoogle Scholar
  12. 12.
    Wen, H., Tang, J., Wu, J.S., et al.: A cross-layer secure communication model based on discrete fractional fourier transform (DFRFT). IEEE Trans. Emerging Topics Comput. 3(1), 119–126 (2015)CrossRefGoogle Scholar
  13. 13.
    Wen, H., et al.: Lightweight and effective detection scheme for node clone attack in WSNs. IET Wireless Sensor Syst. 1(3), 137–143 (2011)CrossRefGoogle Scholar
  14. 14.
    Wen, H., Gong, G., Lv, S.C., Ho, P.H.: Framework for MIMO cross-layer secure communication based on STBC. Telecommun. Syst. 52(4), 2177–2185 (2013)CrossRefGoogle Scholar
  15. 15.
    Wen, H., Wang, Y., Zhu, X., Li, J., Zhou, L.: Physical layer assist authentication technique for smart meter system. IET Commun. 7(3), 189–197 (2013)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Wen, H., Song, H.H., et al.: Lightweight one-time password authentication scheme based on radio frequency fingerprinting. IET Commun. 12(12), 1477–1484 (2018)CrossRefGoogle Scholar
  17. 17.
    Xie, F.Y., Wen, H., Li, Y.S., et al.: Optimized coherent integration-based radio frequency fingerprinting in Internet of Things. IEEE Internet Things J. 5(5), 3967–3977 (2018)CrossRefGoogle Scholar
  18. 18.
    Chen, S., Wen, H., Wu, J., et al.: Physical-layer channel authentication for 5 g via machine learning algorithm. Wireless Commun. Mob. Comput. 2018, 1–10 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aidong Xu
    • 1
  • Yunan Zhang
    • 1
  • Yixin Jiang
    • 1
  • Jie Chen
    • 2
  • Yushan Li
    • 2
  • Lian Dong
    • 2
  • Yujun Yi
    • 2
  • Fei Pan
    • 2
  • Hong Wen
    • 2
    Email author
  1. 1.EPRI, China Southern Power Grid Co., Ltd.GuangzhouChina
  2. 2.National Key Lab of CommunicationUniversity of Electronic Science, and Technology of ChinaChengduChina

Personalised recommendations