The Large Hadron Collider and the Compact Muon Solenoid

  • Patrick L. S. ConnorEmail author
Part of the Springer Theses book series (Springer Theses)


The CERN is an international centre for experimental physics [1]. Originally founded by twelve European countries in 1952 to associate their research programmes, many other countries from all around the world have now joined CERN at various levels, and other topics of research have come up. CERN is nowadays one of the leading centres for research in nuclear and particle physics, for an internal budget of around one billion euros a year.


  1. 1.
    CMS Collaboration. CMS public web site. Accessed 09 Aug 2017
  2. 2.
    Lefèvre C (2008) The CERN accelerator complex. Complexe des accélérateurs du CERN.
  3. 3.
  4. 4.
    Lyndon Evans and Philip Bryant (2008) LHC Machine. J Instrum 3(08):S08001.
  5. 5.
    WJ Stirling (2012) Private communication. Accessed 07 Jan 2018
  6. 6.
    Elder FR et al (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830. Scholar
  7. 7.
    CERN. 25 years of Large Hadron Collider experimental programme. updates/2017/12/25-years-large-hadron-collider-experimental-programme. Accessed 07 Jan 2018
  8. 8.
    Django Manglunki (2013) Calcul, technique et réalisation des accélérateurs de particules. Course of 2nd master yead of civil engineering, ULB, given at CERNGoogle Scholar
  9. 9.
    Wikimedia Foundation. Linear accelerator for elementary particles with drift tubes. Accessed 07 Jan 2018
  10. 10.
    CERN. LHC Machine Outreach. Accessed 07 Jan 2018
  11. 11.
    Hanke K (2013) Past and present operation of the CERN PS Booster. Int J Mod Phys A28:1330019.
  12. 12.
    Pierre Freyermuth. LHC Report: imaginative injectors. Accessed 08 Sept 2017
  13. 13.
  14. 14.
    Landshoff PV (2008) The Total cross-section at the LHC. Acta Phys Polon B39:2063–2094. arXiv:0709.0395 [hep-ph]
  15. 15.
    CMS Collaboration (2016) Measurement of the inelastic proton-proton cross section at \(\sqrt{s} = 13\) TeVGoogle Scholar
  16. 16.
    CMS. CMS Public TWiki page for luminosity. Accessed 30 Sept 2017
  17. 17.
    CMS Collaboration (2017) CMS luminosity measurements for the 2016 data taking periodGoogle Scholar
  18. 18.
    CERN. CERN operation webtools. Accessed 08 Sept 2017
  19. 19.
    CMS Collaboration (2008) The CMS experiment at the CERN LHC. J Instrum 3(08):S08004.
  20. 20.
    Berardi V et al (2004) TOTEM: Technical design report. Total cross section, elastic scattering and diffraction dissociation at the Large Hadron Collider at CERNGoogle Scholar
  21. 21.
    Adriani O et al (2006) Technical design report of the LHCf experiment: measurement of photons and neutral pions in the very forward region of LHCGoogle Scholar
  22. 22.
    Pinfold J et al (2009) Technical design report of the MoEDAL experimentGoogle Scholar
  23. 23.
    Angelis ALS et al (2001) CASTOR: Centauro and strange object research in nucleus-nucleus collisions at the LHC. Nucl Phys B-Proc Suppl 97(1):227–230. ISSN 0920-5632.,
  24. 24.
    Armstrong WW, et al (1994) ATLAS: Technical proposal for a general-purpose p p experiment at the Large Hadron Collider at CERNGoogle Scholar
  25. 25.
    LHCb (1998) Technical Proposal. Technical Proposal. Geneva: CERN.
  26. 26.
    ALICE (1995) Technical proposal for a large ion collider experiment at the CERN LHCGoogle Scholar
  27. 27.
    CMS, the Compact Muon Solenoid: Technical proposal (1994)Google Scholar
  28. 28.
    Tavernier S (2010) Experimental techniques in nuclear and particle physics. Springer, Berlin.
  29. 29.
    Davis SR (2016) Interactive slice of the CMS detector.
  30. 30.
    Chatrchyan S, et al (2014) Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9(10):P10009., arXiv:1405.6569 [physics.ins-det]
  31. 31.
    Emil Kálmán R (1960) A new approach to linear filtering and prediction problems. Trans ASME-J Basic Eng 82(Series D):35–45Google Scholar
  32. 32.
    Rose Kenneth (1998) Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc IEEE 86(11):2210–2239CrossRefGoogle Scholar
  33. 33.
    Fruhwirth R, Waltenberger W, Vanlaer P (2007) Adaptive vertex fitting. J Phys G34:N343.
  34. 34.
    Chatrchyan S, et al (2013) Identification of b-quark jets with the CMS experiment. JINST 8:P04013., arXiv:1211.4462 [hep-ex]
  35. 35.
    Tanabashi M, et al (2018) Review of particle physics. Phys Rev D 98(3):030001Google Scholar
  36. 36.
    Bayatian GL, et al (2007) CMS physics: technical design report volume 2: physics performance. J Phys G 34 CERN-LHCC-2006-021. CMS-TDR-8-2. Revised version submitted on 2006-09-22 17:44:47, 995–1579, 669 p.
  37. 37.
    Abdullin S, et al (2009) ERRATUM: The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c. 60:353–356Google Scholar
  38. 38.
    Cavallari F (2011) Performance of calorimeters at the LHC. J Phys Conf Ser 293(1):012001.
  39. 39.
    Chatrchyan S, et al (2013) Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at \(\sqrt{s} = 7\) TeV. JINST 8:[JINST8,9009(2013)], P09009., arXiv:1306.2016 [hep-ex]
  40. 40.
    Sirunyan AM, et al (2017) Particle-flow reconstruction and global event description with the CMS detector. JINST 12(10):P10003. arXiv:1706.04965 [physics.ins-det]
  41. 41.
    Khachatryan V, et al (2017) The CMS trigger system. JINST 12(01):P01020., arXiv:1609.02366 [physics.ins-det]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CMSDeutsche Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations