A FCA-Based Concept Clustering Recommender System

  • G. Chemmalar SelviEmail author
  • G. G. Lakshmi Priya
  • Rose Bindu Joseph
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 298)


Recommender systems are information filtering software which is capable of resolving the recent issue of internet’s information overload. The recommender system generate the recommendation more suitably based on the data gathered either implicitly like user profile, click information, web log history or explicitly like ratings (scale 1–5), likes, dislikes, feedbacks. The most important challenge to the recommender system is the growing number of online users making it a high dimensional data which leads to the data sparsity problem where the accuracy of recommendation depends on the availability of the data. In this paper, a new approach called formal concept analysis is employed to handle the high dimensional data and a FCA-based recommender algorithm, User-based concept clustering recommendation algorithm (UBCCRA) is proposed. The UBCCRA out performs by accurately generating the recommendation for the group-based users called cluster users. The experimental result is shown to prove the cluster recommendation with good result.


Recommender system Collaborative filtering Clustering Formal concept analysis Sparsity 


  1. 1.
    Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adapt. Interact. 22, 101–123 (2012)CrossRefGoogle Scholar
  2. 2.
    Pan, C., Li, W.: Research paper recommendation with topic analysis. In: Computer Design and Applications, pp. V4–V264. IEEE (2010)Google Scholar
  3. 3.
    Pu, P, Chen, L, Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 57–164. ACM, New York (2011)Google Scholar
  4. 4.
    Hu, R, Pu, P.: Potential acceptance issues of personality-ASED recommender systems. In: Proceedings of ACM Conference on Recommender Systems, RecSys 2009, New York City, NY, USA, p. 225, October 2009Google Scholar
  5. 5.
    Pathak, B., Garfinkel, R., Gopal, R., Venkatesan, R., Yin, F.: Empirical analysis of the impact of recommender systems on sales. J Manag. Inform. Syst. 27(2), 159–188 (2010)CrossRefGoogle Scholar
  6. 6.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). Scholar
  7. 7.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in Artificial Intelligence (2009)Google Scholar
  8. 8.
    Kilani, Y., Otoom, A.F., Alsarhan, A., Almaayah, M.: A genetic algorithms-based hybrid recommender system of matrix factorization and neighborhood-based techniques. J. Comput. Sci. 28, 78–93 (2018)CrossRefGoogle Scholar
  9. 9.
    Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhang, W., Du, Y.J., Song, W.: Recommender system with formal concept analysis (2015)Google Scholar
  11. 11.
    du Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal concept analysis. In: bramer, m, Coenen, F., Allen, T. (eds.) SGAI 2005, pp. 205–218. Springer, London (2006). Scholar
  12. 12.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999). Scholar
  13. 13.
    Doerfel, S., Jäschke, R., Stumme, G.: Publication analysis of the formal concept analysis community. In: Domenach, F., Ignatov, Dmitry I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 77–95. Springer, Heidelberg (2012). Scholar
  14. 14.
    Belohlavek, R., Vychodil, V.: Formal concept analysis and linguistic hedges. Int. J. Gen Syst. 41(5), 503–532 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ignatov D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal concept analysis and triclustering: searching for optimal patterns. Mach. Learn. (2015).
  16. 16.
    Yao, Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, Jerzy W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004). Scholar
  17. 17.
    Djouadi, Y.: Extended Galois derivation operators for information retrieval based on fuzzy formal concept lattice. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS (LNAI), vol. 6929, pp. 346–358. Springer, Heidelberg (2011). Scholar
  18. 18.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186. ACM, October 1994Google Scholar
  19. 19.
    Si, L., Jin, R.: Flexible mixture model for collaborative filtering. In: Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 704–711 (2003)Google Scholar
  20. 20.
    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  21. 21.
    Ignatov, D.I., Nenova, E., Konstantinova, N., Konstantinov, A.V.: Boolean matrix factorisation for collaborative filtering: an FCA-based approach. In: Agre, G., Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) AIMSA 2014, LNCS, vol. 8722, pp. 47–58. Springer, Cham (2014). Scholar
  22. 22.
    Formica, A.: Concept similarity in formal concept analysis: an information content approach. Knowl.-Based Syst. 21(1), 80–87 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tadrat, J., Boonjing, V., Pattaraintakorn, P.: A new similarity measure in formal concept analysis for case-based reasoning. Expert Syst. Appl. 39(1), 967–972 (2012)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Liu, X.: A new model of evaluating concept similarity. Knowl.-Based Syst. 21(8), 842–846 (2008)CrossRefGoogle Scholar
  25. 25.
    He, H., Hai, H., Rujing, W.: FCA-based web user profile mining for topics of interest. In: 2007 IEEE International Conference on Integration Technology, pp. 778–782. IEEE, March 2007Google Scholar
  26. 26.
    Lin, Z.C., Zhu, G.J.: A concept similarity algorithm based on FCA. Comput. Technol. Dev. 9, 112–114 (2008)Google Scholar
  27. 27.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. WWW 1, 285–295 (2001)CrossRefGoogle Scholar
  28. 28.
    Ma, H., King, I., Lyu, M.R.: Effective missing data prediction for collaborative filtering. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 39–46. ACM, July 2007Google Scholar
  29. 29.
    Wang, J., De Vries, A.P., Reinders, M.J.: Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 501–508. ACM, August 2006Google Scholar
  30. 30.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • G. Chemmalar Selvi
    • 1
    Email author
  • G. G. Lakshmi Priya
    • 1
  • Rose Bindu Joseph
    • 2
  1. 1.Vellore Institute of TechnologyVelloreIndia
  2. 2.Christ Academy Institute for Advanced StudiesBengaluruIndia

Personalised recommendations