Advertisement

Deposits Formed by Sedimentation and Weathering

  • Florian NeukirchenEmail author
  • Gunnar Ries
Chapter
  • 118 Downloads

Abstract

Weathering, transport, and sedimentation are other processes that lead to effective fractionation. Little wonder important metal deposits are found in sediments. Resources such as sand, gravel, and limestone (Chap.  7) and fossil fuels (Chap.  6) would also fit into this chapter. Changes in flow velocity in rivers lead to sorted deposits of sand and gravel. Weather-resistant minerals with a high density can be enriched to form placer deposits (Sect. 5.9). However, fine clay minerals and dissolved ions are transported into the sea.

Literature

  1. Al-Farraj, A. 2005. An evolutionary model for sabkha development on the north coast of the UAE. Journal of Arid Environments 63: 740–755.CrossRefGoogle Scholar
  2. Aleva, G.J.J. 1994. Laterites: Concepts, geology, morphology and chemistry. International Soil Reference and Information Centre (ISRIC).Google Scholar
  3. Allen, P.A., and J.L. Etienne. 2008. Sedimentary challenge to Snowball Earth. Nature Geoscience 1: 817–825.CrossRefGoogle Scholar
  4. Anonymous, 1908. The Welcome Stranger—biggest nugget known. NZ Truth, S. 8.Google Scholar
  5. Anonymous, 2010. Barnett to open Boddington Gold Mine—ABC News (Australian Broadcasting Corporation), http://www.abc.net.au/news/2010-02-03/barnett-to-open-boddington-gold-mine/320538. Accessed 2 Apr 2013.
  6. Anonymous, 2011. Nachnutzungskonzept Pumpspeicherkraftwerk, 2–4. Gesteins-Perspektiven.Google Scholar
  7. Anonymous, 2012. Boddington Gold Mine (BGM), Western Australia (WA)—Mining Technology. http://www.mining-technology.com/projects/boddington. Accessed 2 Apr 2013.
  8. Atkinson, H. and M. Hale, 1993. Phosphate production in Central and Southern Africa, 1900–1992. Minerals Industry International, September, 22–30.Google Scholar
  9. Bao, Z., and Z. Zhao. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews 33: 519–535.CrossRefGoogle Scholar
  10. Barbara Rohstoffbetriebe GmbH, 1991. Grube Wohlverwahrt-Nammen.Google Scholar
  11. Bárdossy, G. 1982. Karst bauxites. Bauxite deposits on carbonate rock. Amsterdam, Netherlands: Elsevier.Google Scholar
  12. Barifaijo, E., 2001. The petrology of the volcanic rocks of Uganda. In GSU Newsletter, 1. Presented at the regional conference on basement geology, groundwater, mineral resources, and mining related environmental problems in Eastern Africa, 58–59. Kampala, Uganda: Geological Society of Uganda.Google Scholar
  13. Baturin, G.N. 2000. Phosphorites on the sea floor: Origin composition and distribution. New York: Elsevier.Google Scholar
  14. Bechtel, A., Y.-N. Shieh, W.C. Elliott, S. Oszczepalski, and S. Hoernes. 2000. Mineralogy, crystallinity and stable isotopic composition of illitic clays within the Polish Zechstein basin: Implications for the genesis of Kupferschiefer mineralization. Chemical Geology 163: 189–205.CrossRefGoogle Scholar
  15. Bechtel, A., R. Gratzer, W. Püttmann, and S. Oszczepalski. 2001a. Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin-Sieroszowice mining district, SW Poland). Organic Geochemistry 32: 377–395.CrossRefGoogle Scholar
  16. Bechtel, A., Y. Sun, W. Püttmann, S. Hoernes, and J. Hoefs. 2001b. Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangerhausen Basin, Germany. Chemical Geology 176: 31–49.CrossRefGoogle Scholar
  17. Bechtel, A., R. Gratzer, W. Püttmann, and S. Oszczepalski. 2002. Geochemical characteristics across the oxic/anoxic interface (Rote Fäule front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland). Chemical Geology 185: 9–31.CrossRefGoogle Scholar
  18. Bekker, A., J.F. Slack, N. Planavsky, B. Krapez, A. Hofmann, K.O. Konhauser, and O.J. Rouxel. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology 105: 467–508.CrossRefGoogle Scholar
  19. Bell, K., and J. Blenkinsop. 1987. Nd and Sr isotopic compositions of East African carbonatites: Implications for mantle heterogeneity. Geology 15: 99–102.CrossRefGoogle Scholar
  20. Belykh, V.I., E.I. Dunai, and I.P. Lugovaya. 2007. Physicochemical formation conditions of banded iron formations and high-grade iron ores in the region of the Kursk Magnetic Anomaly: Evidence from isotopic data. Geology of Ore Deposits 49: 159–177.CrossRefGoogle Scholar
  21. Beukes, N.J., H. Dorland, J. Gutzmer, M. Nedachi, and H. Ohmoto. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30: 491–494.CrossRefGoogle Scholar
  22. BGR, n.d. Erkundungsstandort Gorleben. http://www.bgr.bund.de/DE/Themen/Endlagerung/Endlagerstandorte/Gorleben/gorleben_node.html. (Abgerufen Mai 2013).
  23. Bluhm, H. 2001. Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3841–3868.CrossRefGoogle Scholar
  24. Borowski, C. 2001. Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3809–3839.CrossRefGoogle Scholar
  25. Bowell, R.J., R.P. Foster, and A.P. Gize. 1993. The mobility of gold in tropical rain forest soils. Economic Geology 88: 999–1016.CrossRefGoogle Scholar
  26. Brocks, J.J., G.A. Logan, R. Buick, and R.E. Summons. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036.CrossRefGoogle Scholar
  27. Buick, R. 2008. When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2731–2743.CrossRefGoogle Scholar
  28. Butler, G.P. 1969. Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. Journal of Petrology 39: 70–89.Google Scholar
  29. Byerly, G.R., D.R. Lower, and M.M. Walsh. 1986. Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319: 489–491.CrossRefGoogle Scholar
  30. Cabral, A.R., M. Radtke, F. Munnik, B. Lehmann, U. Reinholz, H. Riesemeier, M. Tupinamba, and R. Kwitko-Ribeiro. 2011. Iodine in alluvial platinum-palladium nuggets: Evidence for biogenic precious-metal fixation. Chemical Geology 281: 125–132.CrossRefGoogle Scholar
  31. Cailteux, J.L.H., A.B. Kampunzu, C. Lerouge, A.K. Kaputo, and J.P. Milesi. 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. Journal of African Earth Sciences 42: 134–158.CrossRefGoogle Scholar
  32. Carlisle, D. 1983. Concentration of uranium and vanadium in calcretes and gypcretes. Geological Society, London, Special Publications 11: 185–195.CrossRefGoogle Scholar
  33. Chowdhury, M.R., V. Venkatesh, M.A. Anandalwar and D.K. Paul, 1965. Recent concepts on the origin of Indian laterite. Memoirs of the Geological Survey of India A 31.Google Scholar
  34. Colin, F., P. Lecomte, and B. Boulange. 1989. Dissolution features of gold particles in a lateritic profile at Dondo Mobi, Gabon. Geoderma 45: 241–250.CrossRefGoogle Scholar
  35. Crerar, D.A., and H. Barnes. 1974. Deposition of deep-sea manganese nodules. Geochimica et Cosmochimica Acta 38: 279–300.CrossRefGoogle Scholar
  36. Cronan, D.S. 2000. Handbook of marine mineral deposits. Marine science series. Boca Raton, FL: CRC Press.Google Scholar
  37. Dahanayake, K. and W. Krumbein, 1986. Microbial structures in oolitic iron formations. Mineralium Deposita 21.Google Scholar
  38. Dalvi, A.D., W.G. Bacon, R.C. Osborne, 2004. The past and the future of nickel laterites. In PDAC 2004 international convention, trade show & investors exchange, 7–10. Toronto: The Prospectors and Developers Association of Canada.Google Scholar
  39. Dambeck, H. 2012. Osmosekraftwerk: Grüner Strom aus süßem Wasser—Spiegel Online. http://www.spiegel.de/wissenschaft/technik/osmosekraftwerke-liefern-oekostrom-aus-salzwasser-und-suesswasser-a-823820.html. Accessed 13 Apr 2013.
  40. Davies, K.A. 1947. The phosphate deposits of the Eastern Province, Uganda. Economic Geology 42: 137–146.CrossRefGoogle Scholar
  41. Decrée, S., E. Deloule, T. De Putter, S. Dewaele, F. Mees, J. Yans, and C. Marignac. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context. Ore Geology Reviews 40: 81–89.CrossRefGoogle Scholar
  42. DeDuve, C., and I. Hausser-Siller. 1994. Ursprung des Lebens: Präbiotische Evolution und die Entstehung der Zelle. Heidelberg: Spektrum Akadademischer Verlag.Google Scholar
  43. Delaney, M.L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles 12: 563–572.CrossRefGoogle Scholar
  44. De Putter, T., F. Mees, S. Decrée, and S. Dewaele. 2010. Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment. (Katanga, Democratic Republic of Congo). Ore Geology Reviews 38: 90–100.CrossRefGoogle Scholar
  45. Dèry, P. and B. Anderson, 2007. Peak phosphorus. Energy Bulletin.Google Scholar
  46. Dosseto, A., S.P. Turner, and J. Chappell. 2008. The evolution of weathering profiles through time: New insights from uranium-series isotopes. Earth and Planetary Science Letters 274: 359–371.CrossRefGoogle Scholar
  47. Duggen, S., K. Hoernle, P. van den Bogaard, L. Rüpke, and J.P. Morgan. 2003. Deep roots of the Messinian salinity crisis. Nature 422: 602–606.CrossRefGoogle Scholar
  48. Duggen, S., K. Hoernle, P. van den Bogaard, and D. Garbe-Schönberg. 2005. Post-collisional transition from subduction- to Intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46: 1155–1201.CrossRefGoogle Scholar
  49. Ehrenreich, A., and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied Environmental Microbiology 60: 4517–4526.CrossRefGoogle Scholar
  50. El Desouky, H.A., P. Muchez, and J. Cailteux. 2009. Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geology Reviews 36: 315–332.CrossRefGoogle Scholar
  51. Emmerich, M., 2013. Paläontologie: Eiserne Spuren urzeitlicher Mikroben. Spektrum.de. http://www.spektrum.de/alias/palaeontologie/eiserne-spuren-urzeitlicher-mikroben/1192103. Accessed 24 Apr 2013.
  52. Evans, R.K. 2008. An abundance of lithium. Santiago: World Lithium.Google Scholar
  53. Force, E.R., and W.F. Cannon. 1988. Depositional model for shallow-marine manganese deposits around black shale basins. Economic Geology 83: 93–117.CrossRefGoogle Scholar
  54. Frimmel, H.E. 2002. Genesis of the World’s largest gold deposits. Science 297: 1815–1817.CrossRefGoogle Scholar
  55. Frimmel, H.E. 2005. Archaean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth-Science Reviews 70: 1–46.CrossRefGoogle Scholar
  56. Frimmel, H.E. 2008. Earth’s continental crustal gold endowment. Earth and Planetary Science Letters 267: 45–55.CrossRefGoogle Scholar
  57. Garrels, R.M., and C.L. Christ. 1965. Solutions, minerals, and equilibria. New York: Harper & Row.Google Scholar
  58. Germann, K., 1981. Phosphat-Gesteine. Lagerstätten der Steine, Erden und Industrieminerale, Vademecum. GDMB Verlag Chemie, 159–165.Google Scholar
  59. Gilbert, N. 2009. The disappearing nutrient. Nature 461: 716–718.CrossRefGoogle Scholar
  60. Golightly, J.P. 1979. Nickeliferous laterites: a general description. In international laterite symposium, New Orleans, Society of Mining Engineers, 38–56. American Institute of Mining, Metallurgical, and Petroleum Engineers.Google Scholar
  61. Grace, H. 1991. Investigations in Kenya and Malawi using as-dug laterite as bases for bituminous surfaced roads. Geotechechnical and Geological Engineering 9: 183–195.CrossRefGoogle Scholar
  62. Graham, R.C., A.M. Rossi, and K.R. Hubbert. 2010. Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems. GSA Today 20: 4–9.CrossRefGoogle Scholar
  63. Grotzinger, J.P., and D.H. Rothman. 1996. An abiotic model for stromatolite morphogenesis. Nature 383: 423–425.CrossRefGoogle Scholar
  64. Harder, H. 1989. Mineral genesis in Ironstones: a model based upon laboratory experiments and petrographic observations. In Phanerozoic Ironstones, 9–18. Geological Society Special Publication.Google Scholar
  65. Hardisty, J. 1990. Beaches: Form & process: Numerical experiments with monochromatic waves on the orthogonal profile. London, Boston: Unwin Hyman.Google Scholar
  66. Haubold, H., G. Katzung, and G. Schaumberg. 2006. Die Fossilien des Kupferschiefers: Pflanzen- und Tierwelt zu Beginn des Zechsteins; eine Erzlagerstätte und ihre Paläontologie. Hohenwarsleben: Westarp-Wissenschaften.Google Scholar
  67. Heinrich D., M. Holland and M. Schidlowski, 1982. Mineral deposits and the evolution of the biosphere. Berlin, Heidelberg.Google Scholar
  68. Hoashi, M., D.C. Bevacqua, T. Otake, Y. Watanabe, A.H. Hickman, S. Utsunomiya, and H. Ohmoto. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geoscience 2: 301–306.CrossRefGoogle Scholar
  69. Hoffman, P.F., and D.P. Schrag. 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14: 129–155.CrossRefGoogle Scholar
  70. Holland, H.D. 2002. Volcanic gases, black smokers, and the great oxidation event. Geochimica et Cosmochimica Acta 66: 3811–3826.CrossRefGoogle Scholar
  71. Holland, H.D., and M. Schidlowski (eds.). 1982. Mineral deposits and the evolution of the biosphere. Berlin: Springer.Google Scholar
  72. Horstmann, U.E., D.H. Cornell, B.J. Fryer, R. Scheepers, and F. Walraven. 2001. Rare earth elements and Nd isotopic compositions in banded iron-formations of the Griqualand West Sequence, Northern Cape Province, South Africa. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 152: 439–465.Google Scholar
  73. Hou, B., A.J. Fabris, J.L. Keeling, and M.C. Fairclough. 2007. Cenozoic palaeochannel-hosted uranium and current exploration methods, South Australia. Mesa Journal 46: 34–39.Google Scholar
  74. Hough, R.M., C.R.M. Butt, S.M. Reddy, and M. Verrall. 2007. Gold nuggets: Supergene or hypogene? Australian Journal of Earth Sciences 54: 959–964.CrossRefGoogle Scholar
  75. James, H.L. 1954. Sedimentary facies of iron-formation. Economic Geology 49: 253–293.CrossRefGoogle Scholar
  76. Jorgenson, J.D. 2012. World Mine Production and Reserves—Iron Ore. USGS.Google Scholar
  77. Kappler, A., C. Pasquero, K.O. Konhauser, and D.K. Newman. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33: 865–868.CrossRefGoogle Scholar
  78. Kasting, J.F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research 34: 205–229.CrossRefGoogle Scholar
  79. Kesler, S.E., P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, and T.J. Wallington. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews 48: 55–69.CrossRefGoogle Scholar
  80. Kimberley, M.M. 1980. The Paz de Rio oolitic inland-sea iron formation. Economic Geology 75: 97–106.CrossRefGoogle Scholar
  81. Kimberley, M.M. 1989. Exhalative origins of iron formations. Ore Geology Reviews 5: 13–145.CrossRefGoogle Scholar
  82. Kirk, J., J. Ruiz, J. Chesley, S. Titley, and J. Walshe. 2001. A detrital model for the origin of gold and sulfides in the Witwatersrand basin based on Re-Os isotopes. Geochimica et Cosmochimica Acta 65: 2149–2159.CrossRefGoogle Scholar
  83. Kirk, J., J. Ruiz, J. Chesley, J. Walshe, and G. England. 2002. A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa. Science 297: 1856–1858.CrossRefGoogle Scholar
  84. Klein, C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist 90: 1473–1499.CrossRefGoogle Scholar
  85. Köhler, I., K. Konhauser, and A. Kappler. 2010. Role of Microorganisms in Banded Iron Formations. In Geomicrobiology: Molecular and environmental perspective, ed. L.T. Barton, M. Mandl, and A. Loy. Heidelberg: Springer.Google Scholar
  86. Köhler, I., K.O. Konhauser, D. Papineau, A. Bekker and A. Kappler, 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications 4.Google Scholar
  87. Konhauser, K.O., T. Hamade, R. Raiswell, R.C. Morris, F.G. Ferris, G. Southam, and D.E. Canfield. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology 30: 1079–1082.CrossRefGoogle Scholar
  88. Konhauser, K.O., D.K. Newman, and A. Kappler. 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3: 167–177.CrossRefGoogle Scholar
  89. Konhauser, K.O., L. Amskold, S.V. Lalonde, N.R. Posth, A. Kappler, and A. Anbar. 2007. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth and Planetary Science Letters 258: 87–100.CrossRefGoogle Scholar
  90. Krapez, B., M.E. Barly, and A.L. Pickard. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50: 979–1011.CrossRefGoogle Scholar
  91. Krauskopf, K.B. 1957. Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta 12: 61–84.CrossRefGoogle Scholar
  92. Kucha, H., and W. Przylowicz. 1999. Noble metals in organic matter and clay-organic matrices, Kupferschiefer, Poland. Economic Geology 94: 1137–1162.CrossRefGoogle Scholar
  93. Kucha, H., and M. Pawlikowski. 1986. Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland. Mineralium Deposita 21: 70–80.CrossRefGoogle Scholar
  94. Kühne, W.G. 1976. Goldtransport durch Inlandeis. Dem Andenken von Egon Erwin Kisch (1885–1948) gewidmet. Der Aufschluss 27: 165–169.Google Scholar
  95. Kühne, W.G. 1983. Gold für uns aus der Kiesgrube. Der Aufschluss 34: 215–218.Google Scholar
  96. Langer, E. 1969. Die Nickellagerstätte des Morro do Niquel in Minas Gerais, Brasilien: ihr Aufschluss, ihre Bemusterung und Bewertung. Borntraeger: Gebr.Google Scholar
  97. Lascelles, D.F. 2007. Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations. Ore Geology Reviews 32: 381–411.CrossRefGoogle Scholar
  98. Lee Bray, E. 2012. Bauxite and Alumina. Geological Survey. USA: Mineral Commodity Summaries.Google Scholar
  99. Liedtke, M., and J. Vasters. 2008. Renaissance des deutschen Kupferschieferbergbaus?, 29. Commodity Top News: Bundesamt für Geologie und Rohstoffe.Google Scholar
  100. Lierl, H.-J., and W. Jans. 1990. Geschiebegold aus Schleswig-Holstein. Geschiebekunde aktuell 6 (47): 49–57.Google Scholar
  101. Lottermoser, B.G. 1990. Rare-earth element mineralisation within the Mt. Weld carbonatite laterite. Western Australia. Lithos 24: 151–167.Google Scholar
  102. Louthean Publishing (ed.), 2004. The Australian mines handbook 2003/04 edition 71.Google Scholar
  103. Lowe, D.R. 1980. Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284: 441–443.CrossRefGoogle Scholar
  104. Machens, E. 2011. Hans Merensky—Geologe und Mäzen: Platin. Schweizerbart, Stuttgart: Gold und Diamanten in Afrika.Google Scholar
  105. Mann, A.W. 1984. Mobility of gold and silver in lateritic weathering profiles; some observations from Western Australia. Economic Geology 79: 38–49.CrossRefGoogle Scholar
  106. Mann, A.W., and R.L. Deutscher. 1978. Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Economic Geology 73: 1724–1737.CrossRefGoogle Scholar
  107. McCuaig, T.C., M. Behn, H. Stein, S.G. Hagemann, N.J. McNaughton, K.F. Cassidy, D. Champion and L. Wyborn, 2001. The Boddington gold mine: a new style of Archaean Au-Cu deposit. In Fourth International Archaean Symposium, Extended Abstracts, 453–455.Google Scholar
  108. Meier, C. 2010. Rohstoffe: Bevor der Dünger ausgeht—Spektrum.de http://www.wissenschaft-online.de/artikel/1024445%26_z=859070. Accessed 20 Mar 2013.
  109. Meyer, F.M., U. Happel, J. Hausberg, and A. Wiechowski. 2002. The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela. Ore Geology Reviews 20: 27–54.CrossRefGoogle Scholar
  110. Minter, A.H.G. 1978. A sedimentological synthesis of placer gold, uranium and pyrite concentrations in Proterozoic Witwatersrand deposits. In Fluvial Sedimentology, ed. A.D. Miall, 5, 801–829. Canadian Society for Petroleum Geology, Memoir.Google Scholar
  111. Morris, R.C. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes—a conceptual model. In Handbook of strata-bound and stratiform ore deposits, ed. K.H. Wolf, 13, 73–235. Amsterdam: Elsevier.Google Scholar
  112. Morris, R.C. 2002. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia—a discussion. Economic Geology 97: 177–181.CrossRefGoogle Scholar
  113. Ochsenius, C. 1877. Die Bildung der Steinsalzlager und ihrer Mutterlaugensalze unter specieller Berücksichtigung der Flötze von Douglashall in der egeln’schen Mulde. Pfeffer, Halle: C. E. M.Google Scholar
  114. Oftedahl, C. 1958. A theory of exhalative-sedimentary ores. Geologiska Föreningen i Stockholm Förhandlingar 80: 1–19.CrossRefGoogle Scholar
  115. Oszczepalski, S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita 34: 599–613.CrossRefGoogle Scholar
  116. Pašava, J., S. Oszczepalski, and A. Du. 2010. Re-Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment. Mineralium Deposita 45: 189–199.CrossRefGoogle Scholar
  117. Petrascheck, W.E. 1989. The genesis of allochthonous karst-type bauxite deposits of Southern Europe. Mineralium Deposita 24: 77–81.CrossRefGoogle Scholar
  118. Pickard, A.L. 2002. SHRIMP U-Pb zircon ages of tuffaceous mudrocks in the Brockman Iron Formation of the Hamersley Range, Western Australia. Australian Journal of Earth Sciences 49: 491–507.CrossRefGoogle Scholar
  119. Pickard, A.L., M.E. Barley, and B. Krapez. 2004. Deep-marine depositional setting of banded iron formation: Sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia. Sedimentary Geology 170: 37–62.CrossRefGoogle Scholar
  120. Piestrzynski, A., J. Pieczonka, and A. Gluszek. 2002. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineralium Deposita 37: 512–528.CrossRefGoogle Scholar
  121. Planavsky, N., O. Rouxel, A. Bekker, R. Shapiro, P. Fralick, and A. Knudsen. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters 286: 230–242.CrossRefGoogle Scholar
  122. Pohl, W.L. 2005. Mineralische und Energie-Rohstoffe. 5. Ed. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  123. Porrenga, D. 1967. Glauconite and chamosite as depth indicators in the marine environment. Marine Geology 5: 495–501.CrossRefGoogle Scholar
  124. Posth, N.R., K.O. Konhauser, and A. Kappler. 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience 10: 703–708.CrossRefGoogle Scholar
  125. Poulton, S.W., P.W. Fralick, and D.E. Canfield. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience 3: 486–490.CrossRefGoogle Scholar
  126. Preidl, M., and M. Metzler. 1984. The sedimentation of copper-bearing shales (Kupferschiefer) in the Sudetic foreland. Mineralium Deposita 19: 243–248.CrossRefGoogle Scholar
  127. Reedman, J.H. 1984. Resources of phosphate, niobium, iron, and other elements in residual soils over the Sukulu carbonatite complex, southeastern Uganda. Economic Geology 79: 716–724.CrossRefGoogle Scholar
  128. Reith, F., S.L. Rogers, D.C. McPhail, and D. Webb. 2006. Biomineralization of gold: Biofilms on bacterioform gold. Science 313: 233–236.CrossRefGoogle Scholar
  129. Richter-Bernburg, G. 1953. Über salinare Sedimentation. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 105: 593–645.Google Scholar
  130. Ries, G. 2001. Lateritische Nickellagerstätten in Neu Kaledonien. Der Aufschluss 52: 79–83.Google Scholar
  131. Ries, G. 2007. Die Entwicklung der Erdatmosphäre. Der Aufschluss 58: 217–226.Google Scholar
  132. Ries, G. 2010. Die Entwicklungsgeschichte der Erdatmosphäre und ihres Sauerstoffgehaltes. Bergbau 61: 109–118.Google Scholar
  133. Risacher, F., H. Alonso, and C. Salazar. 2003. The origin of brines and salts in Chilean salars: A hydrochemical review. Earth-Science Reviews 63: 249–293.CrossRefGoogle Scholar
  134. Robb, L.J., and F.M. Meyer. 1995. The Witwatersrand Basin, South Africa: Geological framework and mineralization processes. Ore Geology Review 10: 67–94.CrossRefGoogle Scholar
  135. Santosh, M., and P.K. Omana. 1991. Very high purity gold form lateritic weathering profiles of Nilambur, Southern India. Geology 19: 746–749.CrossRefGoogle Scholar
  136. Sawlowicz, Z. 1989. On the origin of copper mineralization in the Kupferschiefer: A sulphur isotope study. Terra Nova 1 (4): 339–343.CrossRefGoogle Scholar
  137. Schellmann, W. 1983. Geochemical principles of lateritic nickel ore formation. In Proceedings of the international seminar of laterisation processes, 2o, 119–135. São Paulo.Google Scholar
  138. Schlüter, T. 1991. Systematik, Palökologie und Biostratonomie von Phalacrocorax kuehnaeus nov. spec., einem fossilen Kormoran (Aves: Phalacrocoracidae) aus mutmaßlich oberpliozänen Phosphoriten N Tansanias. Berliner Geowissenschaftliche Abhandlungen. A 134: 279–309.Google Scholar
  139. Schoettle, M., and G.M. Friedmann. 1971. Fresh Water Iron-Manganese Nodules in Lake George, New York. Geological Society of America Bulletin 82: 101–110.CrossRefGoogle Scholar
  140. Schultz, L. 1993. Planetologie: eine Einführung. Basel, Boston: Birkhäuser Verlag.Google Scholar
  141. Simonson, B.M. 1985. Sedimentological constraints on the origins of Precambrian iron-formations. Geological Society of America Bulletin 96: 244–252.CrossRefGoogle Scholar
  142. Slack, J.F., T. Grenne, A. Bekker, O.J. Rouxel, and P.A. Lindberg. 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters 255: 243–256.CrossRefGoogle Scholar
  143. Slack, J.F., and W.F. Cannon. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology 37: 1011–1014.CrossRefGoogle Scholar
  144. Smirnov, V.I. 1989. European part of the USSR. Mineral Deposits of Europe 4: 279–407.Google Scholar
  145. Sorby, H.C. 1857. On the origin of the Cleveland Hill ironstone. Geol. Polytechnic. Soc. West Riding Yorkshire Proc. 3: 457–461.CrossRefGoogle Scholar
  146. Squyres, S.W., J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhöfer, A.H. Knoll, S.M. McLennan, H.Y. McSween, R.V. Morris, J.W. Rice, R. Rieder, and L.A. Soderblom. 2004. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science 306: 1709–1714.CrossRefGoogle Scholar
  147. Sun, Y.-Z., and W. Püttmann. 2000. The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Organic Geochemistry 31: 1143–1161.CrossRefGoogle Scholar
  148. Strunz, H., 2001. Strunz mineralogical tables: chemical-structural mineral classification system. 9. Ed. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  149. Talbot, C.J., and V. Pohjola. 2009. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. Earth-Science Reviews 97: 155–183.CrossRefGoogle Scholar
  150. Tardy, Y. 1997. Petrology of laterites and tropical soils. Rotterdam, Netherlands; Brookfield, VT, USA: A. A. Balkema.Google Scholar
  151. Taylor, D., H.J. Dalstra, A.E. Harding, G.C. Broadbent, and M.E. Barley. 2001. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Economic Geology 96: 837–873.Google Scholar
  152. Taylor, D., H.J. Dalstra, and A.E. Harding. 2002. Genesis of high-hrade hematite orebodies of the Hamersley Province, Western Australia—a reply. Economic Geology 97: 179–181.CrossRefGoogle Scholar
  153. Thiel, H. 2001. Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3433–3452.CrossRefGoogle Scholar
  154. Thiel, H., G. Schriever, A. Ahnert, H. Bluhm, C. Borowski, and K. Vopel. 2001. The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3869–3882.CrossRefGoogle Scholar
  155. Towe, K.M. 1996. Environmental oxygen conditions during the origin and early evolution of life. Advances in Space Research 18: 7–15.CrossRefGoogle Scholar
  156. Trechow, P. 2011. Lithium—ein Spannungsmacher auf Kreislaufkurs. ingenieur.de. http://www.ingenieur.de/Themen/Rohstoffe/Lithium-Spannungsmacher-Kreislaufkurs. Accessed 18 Apr 2013.
  157. Troly, G., M. Esterle, B. Pelletier and W. Reibell, 1979. Nickel deposits in New Caledonia: some factors influencing their formation. In Proceedings of the international symposium of lateritisation processes, 81–119. New Orleans.Google Scholar
  158. Valayashko, M.G. 1958. Die wichtigsten geochemischen Parameter für die Bildung der Kalisalzlagerstätten. Freiburger Forschungshefte A123: 197–233.Google Scholar
  159. Valeton, I., M. Biermann, R. Reche, and F. Rosenberg. 1987. Genesis of nickel laterites and bauxites in greece during the jurassic and cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews 2: 359–404.CrossRefGoogle Scholar
  160. Van de Kerkhof, S. 2002. In: Die Industrialisierung europäischer Montanregionen im 19. Jahrhundert, ed. T. Pierenkemper, 225–275. Franz Steiner Verlag.Google Scholar
  161. Van Straaten, P. 2002. Rocks for crops: Agrominerals of Sub-Saharan Africa. Nairobi, Kenya: ICAF.Google Scholar
  162. van Kauwenbergh, S.J. 1991. Overview of phosphate deposits in East and Southeast Africa. Fertilizer Research 30: 127–150.CrossRefGoogle Scholar
  163. Van Wyk, P. and l. F. Pienaar, 1986. Diamondiferous gravels of the lower Orange River, Namaqualand, In Mineral Deposits of Southern Africa, 2.173–2.191. Johannesburg: Geological Society of South Africa.Google Scholar
  164. Vaughan, D.J., M.A. Sweeney, G. Friedrich, R. Diedel, and C. Haranczyk. 1989. The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Economic Geology 84: 1003–1027.CrossRefGoogle Scholar
  165. Wagner, T., M. Okrusch, S. Weyer, J. Lorenz, Y. Lahaye, H. Taubald, and R. Schmitt. 2010. The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: Insight from detailed sulfur isotope studies. Mineralium Deposita 45: 217–239.CrossRefGoogle Scholar
  166. Wang, X., and W.E.G. Müller. 2009. Marine biominerals: Perspectives and challenges for polymetallic nodules and crusts. Trends in Biotechnology 27: 375–383.CrossRefGoogle Scholar
  167. Wang, X., H.C. Schröder, M. Wiens, U. Schloßmacher, and W.E.G. Müller. 2009a. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40: 350–358.CrossRefGoogle Scholar
  168. Wang, Y., H. Xu, E. Merino, and H. Konishi. 2009b. Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nature Geoscience 2: 781–784.CrossRefGoogle Scholar
  169. Warren, J.K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews 98: 217–268.CrossRefGoogle Scholar
  170. Weber, K.A., L.A. Achenbach, and J.D. Coates. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4: 752–764.CrossRefGoogle Scholar
  171. Whattam, S.A. 2009. Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 113: 88–114.CrossRefGoogle Scholar
  172. Widdel, S., S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, and B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836.CrossRefGoogle Scholar
  173. Yamaguchi, K. E. n.d. Iron isotope compositions of Fe-oxide as a measure of water-rock interaction: An example from Precambrian tropical laterite in Botswana. Frontier Research on Earth Evolution (IFREE Report for 2003–2004).Google Scholar

Further Reading

  1. Guilbert, J.M., and C.F. Park. 1986. The geology of ore deposits. New York: WH Freeman.Google Scholar
  2. Laznicka, P. 2010. Giant Metallic Deposits: Future sources of industrial metals, 2nd ed. Heidelberg: Springer.CrossRefGoogle Scholar
  3. Lohmann, D., and N. Podbregar. 2012. Im Fokus: Bodenschätze. Springer, Heidelberg: Auf der Suche nach Rohstoffen.CrossRefGoogle Scholar
  4. Misra, K.C. 2000. Understanding mineral deposits. Dordrecht, Niederlande: Kluwer Academic Publishers.CrossRefGoogle Scholar
  5. Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.Google Scholar
  6. Pohl, W.L. 2011. Economic Geology. Chichester: Wiley-Blackwell.Google Scholar
  7. Robb, L. 2005. Introduction to ore-forming processes. Malden, Massachussetts: Blackwell Science.Google Scholar
  8. Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.Google Scholar
  9. Seidler, C. 2012. Deutschlands verborgene Rohstoffe: Kupfer. Hanser, München: Gold und seltene Erden.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BerlinGermany
  2. 2.MarxenGermany

Personalised recommendations