Advertisement

Identity-Based Signature Scheme Secure in Ephemeral Setup and Leakage Scenarios

  • Łukasz KrzywieckiEmail author
  • Marta Słowik
  • Michał Szala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11879)

Abstract

We propose the identity-based signature (IBS) scheme resilient to ephemerals leakage and setup. The scheme is applicable to scenarios, where signers can not trust thoroughly the signing devices, and doubts about the fairness of randomness the hardware and the operating system generate are justified. Our construction is based on the lightweight IBS by Galindo and Garcia. We present a formal security model for IBS in which all values coming from randomness source in signing procedure are leaked or set by adversary. We argue that the original scheme is vulnerable to universal forgery in our security model. We give details on our modified construction and provide a formal security proof in Random Oracle Model, claiming that even such a strong adversary cannot forge a signature in our scheme.

Keywords

Identity-based signature Ephemeral secret setting Ephemeral secret leakage Untrusted device 

References

  1. 1.
    IEEE P1363.3/D9, May 2013: IEEE Standard for Identity-Based Cryptographic Techniques Using Pairings. IEEE (2013)Google Scholar
  2. 2.
    Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3(2), 111–128 (2013)CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_3CrossRefzbMATHGoogle Scholar
  4. 4.
    Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 364–375 (2015)Google Scholar
  5. 5.
    Burnett, A., Byrne, F., Dowling, T., Duffy, A.: A biometric identity based signature scheme. Int. J. Netw. Secur. 5(3), 317–326 (2007)Google Scholar
  6. 6.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: Yao, F.F., Luks, E.M. (eds.) Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp. 235–244. ACM (2000)Google Scholar
  7. 7.
    Chai, Z., Cao, Z., Dong, X.: Identity-based signature scheme based on quadratic residues. Sci. China Ser. F: Inf. Sci. 50(3), 373–380 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Deng, L., Zeng, J.: Two new identity-based threshold ring signature schemes. Theor. Comput. Sci. 535, 38–45 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Galindo, D., Garcia, F.D.: A Schnorr-like lightweight identity-based signature scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–148. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02384-2_9CrossRefGoogle Scholar
  10. 10.
    Han, S., Wang, J., Liu, W.: An efficient identity-based group signature scheme over elliptic curves. In: Freire, M.M., Chemouil, P., Lorenz, P., Gravey, A. (eds.) ECUMN 2004. LNCS, vol. 3262, pp. 417–429. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30197-4_42CrossRefGoogle Scholar
  11. 11.
    Ki, J.H., Hwang, J.Y., Lee, D.H.: Identity-based ring signature schemes for multiple domains. TIIS 6(10), 2692–2707 (2012)Google Scholar
  12. 12.
    Kim, M., Fujioka, A., Ustaoglu, B.: Strongly secure authenticated key exchange without NAXOS’ approach under computational Diffie-Hellman assumption. IEICE Trans. 95-A(1), 29–39 (2012)Google Scholar
  13. 13.
    Krzywiecki, Ł.: Schnorr-like identification scheme resistant to malicious subliminal setting of ephemeral secret. In: Bica, I., Reyhanitabar, R. (eds.) SECITC 2016. LNCS, vol. 10006, pp. 137–148. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47238-6_10CrossRefGoogle Scholar
  14. 14.
    Krzywiecki, Ł., Kluczniak, K., Kozieł, P., Panwar, N.: Privacy-oriented dependency via deniable SIGMA protocol. Comput. Secur. 79, 53–67 (2018)CrossRefGoogle Scholar
  15. 15.
    Krzywiecki, Ł., Kutyłowski, M.: Security of Okamoto identification scheme: a defense against ephemeral key leakage and setup. In: Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing, SCC@AsiaCCS 2017, Abu Dhabi, United Arab Emirates, 2 April 2017, pp. 43–50 (2017)Google Scholar
  16. 16.
    Krzywiecki, Ł., Słowik, M.: Strongly deniable identification schemes immune to prover’s and verifier’s ephemeral leakage. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp. 115–128. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69284-5_9CrossRefGoogle Scholar
  17. 17.
    Krzywiecki, Ł., Wlisłocki, T.: Deniable key establishment resistance against eKCI attacks. Secur. Commun. Netw. 2017, 7810352:1–7810352:13 (2017)CrossRefGoogle Scholar
  18. 18.
    Krzywiecki, Ł., Wszoła, M., Kutyłowski, M.: Brief announcement: anonymous credentials secure to ephemeral leakage. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp. 96–98. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60080-2_7CrossRefGoogle Scholar
  19. 19.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75670-5_1CrossRefzbMATHGoogle Scholar
  20. 20.
    Lee, J., Park, J.H.: Authenticated key exchange secure under the computational Diffie-Hellman assumption. Cryptology ePrint Archive, Report 2008/344 (2008)Google Scholar
  21. 21.
    Lin, C.-Y., Wu, T.-C., Zhang, F., Hwang, J.-J.: New identity-based society oriented signature schemes from pairings on elliptic curves. Appl. Math. Comput. 160(1), 245–260 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of kleptographic attacks. IACR Cryptology ePrint Archive, 2015/695 (2015)Google Scholar
  23. 23.
    Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)CrossRefGoogle Scholar
  24. 24.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  25. 25.
    Tseng, Y.-M., Tsai, T.-T., Huang, S.-S.: Leakage-free ID-based signature. Comput. J. 58(4), 750–757 (2015)CrossRefGoogle Scholar
  26. 26.
    Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Cryptology ePrint Archive, Report 2007/123 (2007)Google Scholar
  27. 27.
    Wei, L., Zhang, L., Huang, D., Zhang, K.: Efficient and provably secure identity-based multi-signature schemes for data aggregation in marine wireless sensor networks. In: Fortino, G., et al. (eds.) 14th IEEE International Conference on Networking, Sensing and Control, ICNSC 2017, Calabria, Italy, 16–18 May 2017, pp. 593–598. IEEE (2017)Google Scholar
  28. 28.
    Wu, J.-D., Tseng, Y.-M., Huang, S.-S.: Leakage-resilient ID-based signature scheme in the generic bilinear group model. Secur. Commun. Netw. 9(17), 3987–4001 (2016)CrossRefGoogle Scholar
  29. 29.
    Yang, Y., Hu, Y., Zhang, L.: An efficient biometric identity based signature scheme. TIIS 7(8), 2010–2026 (2013)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Yang, L., Wang, S.: An efficient identity-based signature scheme for vehicular communications. In: 11th International Conference on Computational Intelligence and Security, CIS 2015, Shenzhen, China, 19–20 December 2015, pp. 326–330. IEEE Computer Society (2015)Google Scholar
  31. 31.
    Zhang, Y., He, D., Huang, X., Wang, D., Choo, K.-K.R.: White-box implementation of the identity-based signature scheme in the IEEE P1363 standard for public key cryptography. IACR Cryptology ePrint Archive, 2018/814 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Łukasz Krzywiecki
    • 1
    Email author
  • Marta Słowik
    • 1
  • Michał Szala
    • 1
  1. 1.Department of Computer Science, Faculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations