Advertisement

Indoor Air Quality and Wellbeing - Enabling Awareness and Sensitivity with Ambient IoT Displays

  • Andreas SeidererEmail author
  • Ilhan Aslan
  • Chi Tai Dang
  • Elisabeth André
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11912)

Abstract

The quality of indoor air exerts influence on the wellbeing of people. However, people rarely notice a constant and creeping deterioration of indoor air. Especially in enclosed places where several people get together, like meeting rooms, school rooms and public transportation, bad air quality might cause a reduction of cognitive performance, increased headache, fatigue and sleepiness. This paper describes and discusses a privacy respecting system, built with low cost IoT components and open-source software, that informs room occupants about bad air quality with ambient lights. Additionally, the status of the windows is indicated so that they are not forgotten to be closed after airing. We conducted a workshop with an implementation of the system with five users and present the results which show the usefulness and desirability of ambient notifications for indoor air quality monitoring.

Keywords

Ambient display Ambient light Air quality Smart home Context-aware system Human wellbeing Ubiquitous computing 

Notes

Acknowledgments

We want to thank Andrés Caro Quintul for his help with parts of the prototype.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    Gesundheitliche Bewertung von Kohlendioxid in der Innenraumluft. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 51(11), 1358–1369 (2008). https://link.springer.com/article/10.1007/s00103-008-0707-2
  11. 11.
    Allen, J.G., et al.: Airplane pilot flight performance on 21 maneuvers in a flight simulator under varying carbon dioxide concentrations. J. Expo. Sci. Environ. Epidemiol. 29(4), 457–468 (2018)CrossRefGoogle Scholar
  12. 12.
    Allen, J.G., MacNaughton, P., Satish, U., Santanam, S., Vallarino, J., Spengler, J.D.: Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office. Environments 124(6), 805 (2016)Google Scholar
  13. 13.
    Azuma, K., Kagi, N., Yanagi, U., Osawa, H.: Effects of low-level inhalation exposure to carbon dioxide in indoor environments: a short review on human health and psychomotor performance. Environ. Int. 121, 51–56 (2018)CrossRefGoogle Scholar
  14. 14.
    Consolvo, S., Towle, J.: Evaluating an ambient display for the home. In: CHI 2005 Extended Abstracts, pp. 1304–1307. ACM (2005)Google Scholar
  15. 15.
    Dang, C.T., André, E.: A framework for the development of multi-display environment applications supporting interactive real-time portals. In: EICS 2014, pp. 45–54. ACM, New York (2014).  https://doi.org/10.1145/2607023.2607038
  16. 16.
    Dang, C.T., Andre, E.: Acceptance of autonomy and cloud in the smart home and concerns. In: Dachselt, R., Weber, G. (eds.) Mensch und Computer 2018 - Tagungsband. Gesellschaft fuer Informatik e.V, Bonn (2018)Google Scholar
  17. 17.
    Dang, C.T., Seiderer, A., André, E.: Theodor: a step towards smart home applications with electronic noses. In: Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction, iWOAR 2018, pp. 11:1–11:7. ACM, New York (2018)Google Scholar
  18. 18.
    De La Iglesia, D.H., De Paz, J.F., Villarrubia González, G., Barriuso, A.L., Bajo, J.: A context-aware indoor air quality system for sudden infant death syndrome prevention. Sensors 18(3), 757 (2018)CrossRefGoogle Scholar
  19. 19.
    Fortmann, J., Stratmann, T.C., Boll, S., Poppinga, B., Heuten, W.: Make me move at work! an ambient light display to increase physical activity. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 274–277 (2013)Google Scholar
  20. 20.
    Gunnarsen, L., Fanger, P.O.: Adaptation to indoor air pollution. Environ. Int. 18(1), 43–54 (1992)CrossRefGoogle Scholar
  21. 21.
    Mankoff, J., Dey, A.K., Hsieh, G., Kientz, J., Lederer, S., Ames, M.: Heuristic evaluation of ambient displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 169–176. ACM (2003)Google Scholar
  22. 22.
    Marques, G., Ferreira, C.R., Pitarma, R.: Indoor air quality assessment using a CO2 monitoring system based on internet of things. J. Med. Syst. 43(3), 67 (2019)CrossRefGoogle Scholar
  23. 23.
    Mateevitsi, V., Reda, K., Leigh, J., Johnson, A.: The health bar: a persuasive ambient display to improve the office worker’s well being. In: Proceedings of the 5th Augmented Human International Conference. ACM (2014)Google Scholar
  24. 24.
    Matviienko, A., et al.: Towards new ambient light systems: a close look at existing encodings of ambient light systems. Interact. Des. Archit. 2015(26), 10–24 (2015)Google Scholar
  25. 25.
    Matviienko, A., et al.: Deriving design guidelines for ambient light systems. In: Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, pp. 267–277. ACM (2015)Google Scholar
  26. 26.
    Maula, H., Hongisto, V., Naatula, V., Haapakangas, A., Koskela, H.: The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms. Indoor Air 27(6), 1141–1153 (2017)CrossRefGoogle Scholar
  27. 27.
    Müller, H., Kazakova, A., Heuten, W., Boll, S.: Lighten up!—An ambient light progress bar using individually controllable LEDs. In: De Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds.) AmI 2015. LNCS, vol. 9425, pp. 109–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26005-1_8CrossRefGoogle Scholar
  28. 28.
    Müller, H., Kazakova, A., Pielot, M., Heuten, W., Boll, S.: Ambient Timer – unobtrusively reminding users of upcoming tasks with ambient light. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117, pp. 211–228. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40483-2_15CrossRefGoogle Scholar
  29. 29.
    Occhialini, V., van Essen, H., Eggen, B.: Design and evaluation of an ambient display to support time management during meetings. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6947, pp. 263–280. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23771-3_20CrossRefGoogle Scholar
  30. 30.
    Ortiz Perez, A., Bierer, B., Scholz, L., Wöllenstein, J., Palzer, S.: A wireless gas sensor network to monitor indoor environmental quality in schools. Sensors 18(12), 4345 (2018)CrossRefGoogle Scholar
  31. 31.
    Rist, T., Seiderer, A., André, E.: Providing life-style-intervention to improve well-being of elderly people. In: Clua, E., Roque, L., Lugmayr, A., Tuomi, P. (eds.) ICEC 2018. LNCS, vol. 11112, pp. 362–367. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99426-0_45CrossRefGoogle Scholar
  32. 32.
    Ritschel, H., Seiderer, A., Janowski, K., Aslan, I., André, E.: Drink-O-Mender: An adaptive robotic drink adviser. In: Proceedings of the 3rd International Workshop on Multisensory Approaches to Human-Food Interaction, MHFI 2018, pp. 3:1–3:8. ACM, New York (2018)Google Scholar
  33. 33.
    Satish, U., et al.: Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 120(12), 1671 (2012)CrossRefGoogle Scholar
  34. 34.
    Seiderer, A., Dang, C.T., André, E.: Exploring opportunistic ambient notifications in the smart home to enhance quality of live. In: Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds.) ICOST 2017. LNCS, vol. 10461, pp. 151–160. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66188-9_13CrossRefGoogle Scholar
  35. 35.
    Yu, B., Hu, J., Funk, M., Feijs, L.: Delight: biofeedback through ambient light for stress intervention and relaxation assistance. Pers. Ubiquit. Comput. 22(4), 787–805 (2018)CrossRefGoogle Scholar
  36. 36.
    Zhang, X., Wargocki, P., Lian, Z., Thyregod, C.: Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air 27(1), 47–64 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas Seiderer
    • 1
    Email author
  • Ilhan Aslan
    • 1
  • Chi Tai Dang
    • 1
  • Elisabeth André
    • 1
  1. 1.Augsburg UniversityAugsburgGermany

Personalised recommendations