Advertisement

Data-Driven Intrusion Detection for Ambient Intelligence

  • Ioannis ChatzigiannakisEmail author
  • Luca Maiano
  • Panagiotis Trakadas
  • Aris Anagnostopoulos
  • Federico Bacci
  • Panagiotis Karkazis
  • Paul G. Spirakis
  • Theodore Zahariadis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11912)

Abstract

Billions of embedded processors are being attached to everyday objects and houseware equipment to enhance daily activities and enable smart living. These embedded processors have enough processing capabilities to process sensor data to produce smart insights, and are designed to operate for months without the need of physical interventions. Despite the compelling features of Internet of Things (IoT), applied at several home-oriented use cases (e.g., lighting, security, heating, comfort), due to the lack of a physical flow of information (e.g., absence of switches and cable-based gateways), the security of such networks is impeding their rapid deployment. In this work we look into IPv6 based IoT deployments, since it is the leading standard for interconnecting the wireless devices with the Internet and we propose a data-driven anomaly detection system that operates at the transport-layer of 6LoWPAN deployments. We present a comprehensive experimental evaluation carried out using both simulated and real-world experimentation facilities that demonstrates the accuracy of our system against well-known network attacks against 6LoWPAN networks.

References

  1. 1.
    Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible authentication protocol (EAP) (2005)Google Scholar
  2. 2.
    Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetGoogle Scholar
  3. 3.
    Boukerche, A., Chatzigiannakis, I., Nikoletseas, S.: Power-efficient data propagation protocols for wireless sensor networks. Simulation 81(6), 399–411 (2005)CrossRefGoogle Scholar
  4. 4.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  5. 5.
    Butun, I., Morgera, S.D., Sankar, R.: A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutorials 16(1), 266–282 (2014)CrossRefGoogle Scholar
  6. 6.
    Chatzigiannakis, I., Pyrgelis, A., Spirakis, P.G., Stamatiou, Y.C.: Elliptic curve based zero knowledge proofs and their applicability on resource constrained devices. In: 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, pp. 715–720, October 2011Google Scholar
  7. 7.
    Chatzigiannakis, I., Strikos, A.: A decentralized intrusion detection system for increasing security of wireless sensor networks. In: 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), pp. 1408–1411, September 2007Google Scholar
  8. 8.
    Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: An adaptive power conservation scheme for heterogeneous wireless sensor networks with node redeployment. In: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 96–105. ACM (2005)Google Scholar
  9. 9.
    Chatzigiannakis, I., Konstantinou, E., Liagkou, V., Spirakis, P.: Design, analysis and performance evaluation of group key establishment in wireless sensor networks. Electron. Notes Theor. Comput. Sci. 171(1), 17–31 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chatzigiannakis, I., Konstantinou, E., Liagkou, V., Spirakis, P.: Design, analysis and performance evaluation of group key establishment in wireless sensor networks. Electron. Notes Theor. Comput. Sci. 171(1), 17–31 (2007). Proceedings of the Second Workshop on Cryptography for Ad-hoc Networks (WCAN 2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chatzigiannakis, I., Mylonas, G., Vitaletti, A.: Urban pervasive applications: challenges, scenarios and case studies. Comput. Sci. Rev. 5(1), 103–118 (2011)CrossRefGoogle Scholar
  12. 12.
    Hu, Y., Perrig, A., Johnson, D.B.: Wormhole detection in wireless ad hoc networks. In: Ninth International Conference on Network protocol (ICNP), vol. 1 (2002)Google Scholar
  13. 13.
    Dimitrios, A., Vasileios, G., Dimitrios, G., Ioannis, C.: Employing internet of things technologies for building automation. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012), pp. 1–8. IEEE (2012)Google Scholar
  14. 14.
    Wenliang, D., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(2), 228–258 (2005)CrossRefGoogle Scholar
  15. 15.
    Hassan, S.A., Hussain, F., Hussain, R., Hossain, E.: Machine learning in IoT security: current solutions and future challenges. arXiv:1904.05735v1 (2019)
  16. 16.
    Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., Yegin, A.: Protocol for carrying authentication for network access (PANA) (2008)Google Scholar
  17. 17.
    Fuller, W.A.: Introduction to Statistical Time Series, 2nd edn. Wiley, Hoboken (1995)CrossRefGoogle Scholar
  18. 18.
    ÜNAL, D., GÜL, E., YAVUZ, F.Y.: Deep learning for detection of routing attacks in the internet of things. Int. J. Comput. Intell. Syst. 12(1), 39–58 (2018)CrossRefGoogle Scholar
  19. 19.
    Gamboa, J.C.B.: Deep learning for time-series analysis. arXivpreprint arXiv:1701.01887 (2017)
  20. 20.
    Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Security challenges in the IP-based internet of things. Wirel. Pers. Commun. 61(3), 527–542 (2011)CrossRefGoogle Scholar
  21. 21.
    Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermeasures. In: Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, pp. 113–127. IEEE (2003)Google Scholar
  22. 22.
    Kaufman, C.: Internet key exchange (IKEv2) protocol (2005)Google Scholar
  23. 23.
    Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.: Host identity protocol version 2(HIPv2) (2015)Google Scholar
  24. 24.
    Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., Pantziou, G.: A survey on jamming attacks and countermeasures in wsns. IEEE Commun. Surv. Tutorials 11(4), 42–56 (2009)CrossRefGoogle Scholar
  25. 25.
    Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: analysis & defenses. In: Third International Symposium on Information Processing in Sensor Networks, IPSN 2004, pp. 259–268. IEEE (2004)Google Scholar
  26. 26.
    Phelan, T.: Datagram transport layer security (DTLS) over the datagram congestion control protocol (DCCP) (2008)Google Scholar
  27. 27.
    Rescorla, E.: The transport layer security (TLS) protocol version 1.3 (2018)Google Scholar
  28. 28.
    Sadeghi, A.-R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2015)Google Scholar
  29. 29.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013).  https://doi.org/10.1007/978-1-4757-3264-1zbMATHCrossRefGoogle Scholar
  30. 30.
    Velivasaki, T.-H.N., Karkazis, P., Zahariadis, T.V., Trakadas, P.T., Capsalis, C.N.: Trust-aware and link-reliable routing metric composition for wireless sensor networks. Trans. Emerg. Telecommun. Technol. 25(5), 539–554 (2014)Google Scholar
  31. 31.
    Wallgren, L., Raza, S., Voigt, T.: Routing attacks and countermeasures in the RPL-based internet of things. Int. J. Distrib. Sens. Netw. 9(8), 794326 (2013)CrossRefGoogle Scholar
  32. 32.
    Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Computer 35(10), 54–62 (2002)CrossRefGoogle Scholar
  33. 33.
    Wood, A.D., Stankovic, J.A.: A taxonomy for denial-of-service attacks in wireless sensor networks. In: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, pp. 739–763 (2004)Google Scholar
  34. 34.
    Ylonen, T., Lonvick, C.: The secure shell (SSH) protocol architecture (2006)Google Scholar
  35. 35.
    Zhang, Y., Lee, W., Huang, Y.-A.: Intrusion detection techniques for mobile wireless networks. Wirel. Netw. 9(5), 545–556 (2003)CrossRefGoogle Scholar
  36. 36.
    Zhou, L., Haas, Z.J.: Securing ad hoc networks. IEEE Netw. 13(6), 24–30 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sapienza University of RomeRomeItaly
  2. 2.National and Kapodistrian University of AthensAthensGreece
  3. 3.University of West AtticaAigaleoGreece
  4. 4.Computer Science DepartmentUniversity of LiverpoolLiverpoolUK
  5. 5.Computer Engineering and Informatics DepartmentPatras UniversityPatrasGreece

Personalised recommendations